【題目】已知a,b,c分別是△ABC的三個內(nèi)角A,B,C所對的邊,且滿足(2b﹣a)cosC=ccosA.
(Ⅰ)求角C的大;
(Ⅱ)設(shè)y=﹣4 sin2 +2sin(C﹣B),求y的最大值并判斷當(dāng)y取得最大值時△ABC的形狀.
【答案】解:(I)∵(2b﹣a)cosC=ccosA,
由正弦定理可得:(2sinB﹣sinA)cosC=sinCcosA,
化為:2sinBcosC=sin(C+A)=sinB,
∵sinB≠0,∴cosC= ,
∵C∈(0,π),∴C= .
(II)y=﹣4 sin2 +2sin(C﹣B)= (1﹣cosA)+2sin =sinA+ cosA﹣2 =2 ﹣2 ,
∵A∈ ,∴ ∈ ,
∴當(dāng)A+ = ,即A= 時,y確定最大值2﹣2 ,此時B= ,
因此△ABC為直角三角形
【解析】(I)由(2b﹣a)cosC=ccosA,由正弦定理可得:(2sinB﹣sinA)cosC=sinCcosA,利用和差關(guān)系化簡可得:cosC= ,即可得出C.
(II)利用倍角公式、和差公式可得:y=2 ﹣2 ,再利用三角函數(shù)的單調(diào)性及其最值可得A,再利用三角形內(nèi)角和定理即可得出.
【考點(diǎn)精析】利用正弦定理的定義和余弦定理的定義對題目進(jìn)行判斷即可得到答案,需要熟知正弦定理:;余弦定理:;;.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C是圓O上的三個點(diǎn),CO的延長線與線段BA的延長線交于圓外一點(diǎn).若 ,其中m,n∈R.則m+n的取值范圍是( )
A.(0,1)
B.(﹣1,0)
C.(1,+∞)
D.(﹣∞,﹣1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的一個側(cè)面PAD為等邊三角形,且平面PAD⊥平面ABCD,四邊形ABCD是平行四邊形,AD=2,AB=4,BD=2
(1)求證;PA⊥BD
(2)求二面角D﹣BC﹣P的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且 asinA=( b﹣c)sinB+( c﹣b)sinC.
(1)求角A的大;
(2)若a= ,cosB= ,D為AC的中點(diǎn),求BD的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個命題中其中真命題個數(shù)是( ) ①為了了解800名學(xué)生的成績,打算從中抽取一個容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔k為40;
②線性回歸直線 = x+ 恒過樣本點(diǎn)的中心( , );
③隨機(jī)變量ξ服從正態(tài)分布N(2,σ2)(σ>0),若在(﹣∞,1)內(nèi)取值的概率為0.1,則在(2,3)內(nèi)的概率為0.4;
④若事件M和N滿足關(guān)系P(M∪N)=P(M)+P(N),則事件M和N互斥.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,取相同的長度單位,已知曲線C的極坐標(biāo)方程為ρ=2 sinθ,直線l的參數(shù)方程為 (t為參數(shù)).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程.
(Ⅱ)若P(3, ),直線l與曲線C相交于M,N兩點(diǎn),求|PM|+|PN|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣k)ex+k,k∈Z,e=2.71828…為自然對數(shù)的底數(shù).
(1)當(dāng)k=0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈(0,+∞)時,不等式f(x)+5>0恒成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F(xiàn)、G分別為EB和AB的中點(diǎn).
(1)求證:FD∥平面ABC;
(2)求二面角B﹣FC﹣G的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=asinx﹣bcosx(a,b為常數(shù),a≠0,x∈R)的圖象關(guān)于x= 對稱,則函數(shù)y=f( ﹣x)是( )
A.偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱
B.偶函數(shù)且它的圖象關(guān)于點(diǎn) 對稱
C.奇函數(shù)且它的圖象關(guān)于點(diǎn) 對稱
D.奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對稱
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com