【題目】如圖,在四棱錐中,,,為等邊三角形,且平面平面,中點(diǎn).

1)求證:平面

2)求二面角的正弦值.

【答案】1)證明見解析;(2.

【解析】

(1)可證平面,從而得到要證的線面垂直;

(2)過點(diǎn)的垂線,交于點(diǎn),連結(jié),可證二面角的平面角為,利用余弦定理可求其余弦值后可得其正弦值.我們也可以建立如圖所示的空間直角坐標(biāo)系,求出平面的法向量和平面的法向量后可求它們的夾角的余弦值,從而得到二面角的正弦值.

(1)證明:因?yàn)?/span>,,

所以,

又∵平面平面,且平面平面,平面

平面,又∵平面,∴ 所以

中點(diǎn),且為等邊三角形,∴,又∵,

平面.

(2)【法一】過點(diǎn)的垂線,交于點(diǎn),連結(jié),

中點(diǎn)為,連接.

因?yàn)?/span>為等邊三角形,所以

由平面平面,平面,平面平面,

所以平面,

平面,所以,由條件知,

,所以平面,

平面,所以,

,所以

所以,

由二面角的定義知,二面角的平面角為,

中,,

,所以,

同理可得,

,在中,

,

所以,二面角的正弦值為.

【法二】

中點(diǎn)為,連接,因?yàn)?/span>為等邊三角形,所以,

由平面平面,平面,平面平面,

所以平面,

所以,由,,

可知,所以

中點(diǎn)為坐標(biāo)原點(diǎn),所在直線為軸,建立如圖所示的空間直角坐標(biāo)系,

所以

所以,

由(1)知,可以為平面的法向量,

因?yàn)?/span>的中點(diǎn),

所以,

由(1)知,平面的一個(gè)法向量為,

設(shè)平面的法向量為

,

,則,

所以

所以二面角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲,乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,其質(zhì)量按測(cè)試指標(biāo)劃分:指標(biāo)大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現(xiàn)隨機(jī)抽取這兩臺(tái)車床生產(chǎn)的零件各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:

測(cè)試指標(biāo)

[85,90)

[90,95)

[95,100)

[100,105)

[105,110)

機(jī)床甲

8

12

40

32

8

機(jī)床乙

7

18

40

29

6

(1)試分別估計(jì)甲機(jī)床、乙機(jī)床生產(chǎn)的零件為優(yōu)品的概率;

(2)甲機(jī)床生產(chǎn)一件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元;假設(shè)甲機(jī)床某天生產(chǎn)50件零件,請(qǐng)估計(jì)甲機(jī)床該天的日利潤(rùn)(單位:元);

(3)從甲、乙機(jī)床生產(chǎn)的零件指標(biāo)在[90,95)內(nèi)的零件中,采用分層抽樣的方法抽取5件,從這5件中任選2件進(jìn)行質(zhì)量分析,求這2件都是乙機(jī)床生產(chǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某化工廠一種溶液的成品,生產(chǎn)過程的最后工序是過濾溶液中的雜質(zhì),過濾初期溶液含雜質(zhì)為2%,每經(jīng)過一次過濾均可使溶液雜質(zhì)含量減少,記過濾次數(shù)為x)時(shí)溶液雜質(zhì)含量為y.

1)寫出yx的函數(shù)關(guān)系式;

2)按市場(chǎng)要求,出廠成品雜質(zhì)含量不能超過0.1%,問至少經(jīng)過幾次過濾才能使產(chǎn)品達(dá)到市場(chǎng)要求?(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)

已知為橢圓的左、右頂點(diǎn), 為其右焦點(diǎn), 是橢圓上異于, 的動(dòng)點(diǎn),且面積的最大值為

)求橢圓的方程及離心率;

)直線與橢圓在點(diǎn)處的切線交于點(diǎn),當(dāng)直線繞點(diǎn)轉(zhuǎn)動(dòng)時(shí),試判斷以

為直徑的圓與直線的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,其中左焦點(diǎn)(-2,0).

1) 求橢圓C的方程;

2) 若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)M在圓x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),函數(shù),,其中為常數(shù),且,令函數(shù)為函數(shù)的積函數(shù).

1)求函數(shù)的表達(dá)式,并求其定義域;

2)當(dāng)時(shí),求函數(shù)的值域

3)是否存在自然數(shù),使得函數(shù)的值域恰好為?若存在,試寫出所有滿足條件的自然數(shù)所構(gòu)成的集合;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;

(2)計(jì)算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓ab0)的離心率,過點(diǎn)A0,-b)和Ba0)的直線與原點(diǎn)的距離為

1)求橢圓的方程.

2)已知定點(diǎn)E-1,0),若直線ykx2k≠0)與橢圓交于C、D兩點(diǎn).問:是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面平面,. 

(1)證明:平面平面

(2)若,為棱的中點(diǎn),,,求四面體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案