(1)把11本不同的書,分成四組,每組本數(shù)是1,2,3,5有幾種分組方法?
(2)把11本不同的書,分成五組,每組本數(shù)是2,2,3,3,1,有幾種分組方法?
(3)把11本不同的書,借給五個(gè)同學(xué),每人本數(shù)是2,2,3,3,1,有幾種不同的借法?
分析:(1)首先從11本書中選1本,再?gòu)?0本書中選2本,再?gòu)?本書中選3本,剩下5本作為最后一組,根據(jù)分步計(jì)數(shù)原理得到結(jié)果.
(2)首先從11本書中選2本,再?gòu)?本書中選2本,再?gòu)?本書中選3本,剩下4本選3本,最后1本作為一組,有四組是兩次重復(fù)出現(xiàn),把求的結(jié)果除以兩個(gè)2的全排列.
(3)首先把書分組,從11本書中選2本,再?gòu)?本書中選2本,再?gòu)?本書中選3本,剩下4本選3本,最后1本作為一組,有四組是兩次重復(fù)出現(xiàn),把這些書借給5個(gè)人看,還有一個(gè)排列.
解答:解:(1)把11本不同的書,分成四組,每組本數(shù)是1,2,3,5,
首先從11本書中選1本,再?gòu)?0本書中選2本,
再?gòu)?本書中選3本,剩下5本作為最后一組,
根據(jù)分步計(jì)數(shù)原理知共有C
111C
102C
83C
55=27720,
(2)把11本不同的書,分成五組,每組本數(shù)是2,2,3,3,1,
首先從11本書中選2本,再?gòu)?本書中選2本,
再?gòu)?本書中選3本,剩下4本選3本,最后1本作為一組,
有四組是兩次重復(fù)出現(xiàn),
共有
=69300,
(3)把11本不同的書,借給五個(gè)同學(xué),每人本數(shù)是2,2,3,3,1,
首先把書分組,從11本書中選2本,再?gòu)?本書中選2本,
再?gòu)?本書中選3本,剩下4本選3本,最后1本作為一組,
有四組是兩次重復(fù)出現(xiàn),共有
=69300種分法,
把這些書借給5個(gè)人看,還有一個(gè)排列69300A
55=8316000種結(jié)果.
點(diǎn)評(píng):本題考查分步計(jì)數(shù)原理,考查排列組合的實(shí)際應(yīng)用,考查平均分組問題,是一個(gè)易錯(cuò)題,特別是平均分組以后還有一個(gè)排列,注意把三種情況進(jìn)行比較.