19.(2x-3)7的展開(kāi)式中,各項(xiàng)系數(shù)的和為-1.

分析 利用賦值法,令x=1即可求出展開(kāi)式中各項(xiàng)系數(shù)的和.

解答 解:(2x-3)7的展開(kāi)式中,令x=1,
得各項(xiàng)系數(shù)的和為(2×1-3)7=-1.
故答案為:-1.

點(diǎn)評(píng) 本題考查了二項(xiàng)式展開(kāi)式定理的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.命題“?x∈R,x3>x2的否定是(  )
A.?x0∈R,x03>x02B.?x0∉R,x03>x02C.?x0∈R,x03≤x02D.?x0∉R,x03≤x02
E.?x0∈R,x03≤x02         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.各項(xiàng)為正數(shù)的數(shù)列{an}前n項(xiàng)和為Sn,且${S_{n+1}}={a_2}{S_n}+{a_1},\;n∈{N^*}$,當(dāng)且僅當(dāng)n=1,n=2時(shí)Sn<3成立,那么a2的取值范圍是[1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若圓(x-2)2+(y-2)2=20上恰有四個(gè)不同的點(diǎn)到直線l:y=2x+m的距離為$\sqrt{5}$,則實(shí)數(shù)m的取值范圍為( 。
A.(-7,3)B.[-7,3]C.(-5,5)D.(-3,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知橢圓E:$\frac{x^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,左,右焦點(diǎn)為F1,F(xiàn)2,上頂點(diǎn)為P,圓C:(x-2a)2+(y-b)2=4恰好與直線PF1相切.
(1)求圓C的方程;
(2)過(guò)橢圓的上頂點(diǎn)是否存在一條直線L與圓C交于A,B兩點(diǎn),且$\overrightarrow{CA}•\overrightarrow{CB}=\frac{92}{5}$,若存在,求出直線L的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=3+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.(t$為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為$ρ=2\sqrt{3}sinθ$.
(1)寫(xiě)出圓C的直角坐標(biāo)方程;
(2)P為直線l上一動(dòng)點(diǎn),當(dāng)P到圓心C的距離最小時(shí),求P的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)=excosx在點(diǎn)(0,f(0))處的切線斜率為(  )
A.0B.-1C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.同時(shí)拋擲兩枚骰子,將得到的點(diǎn)數(shù)分別記為a,b.
(1)求a+b=7的概率;
(2)求點(diǎn)(a,b)在函數(shù)y=2x的圖象上的概率;
(3)將a,b,4的值分別作為三條線段的長(zhǎng),將這兩枚骰子拋擲三次,ξ表示這三次拋擲中能?chē)傻妊切蔚拇螖?shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知隨機(jī)變量ξ的分布列是:
ξ01234
P0.10.20.40.1x
則x=0.2,P(2≤ξ≤4)=0.7.

查看答案和解析>>

同步練習(xí)冊(cè)答案