化簡:
sin50°×(1+
3
tan10°)-cos20°
cos80°×
1-cos20°
考點:三角函數(shù)的化簡求值
專題:三角函數(shù)的求值
分析:利用三角恒等變換,先將所求關(guān)系式中的“切”化“弦”,再通分化簡,利用兩角和的正弦與二倍角的正弦及升冪公式、誘導(dǎo)公式即可求得答案.
解答: 解:原式=
sin50°×
cos10°+
3
sin10°
cos10°
-cos20°
cos80°×
1-cos20°

=
sin50°×
2sin(10°+30°)
cos10°
-cos20°
cos80°×
2
sin10°
=
2sin50°cos50°
cos10°
-cos20°
cos80°×
2
sin10°

=
cos10°
cos10°
-cos20°
cos80°×
2
sin10°
=
1-cos20°
cos80°×
2
sin10°

=
2sin210°
sin10°×
2
sin10°
=
2
點評:本題考查三角函數(shù)的化簡求值,考查兩角和的正弦與二倍角的正弦及升冪公式、誘導(dǎo)公式的綜合運用,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知O是△ABC的重心,求證:
OA
+
OB
+
OC
=
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三條直線l1:2x-y+a=0(a>0),直線l2:-4x+2y+1=0和直線l3:x+y-1=0,且l1與l2的距離是
7
5
10
,(1)求a的值;
(2)求l1、l3與x軸圍成的三角形面積;
(3)能否找到一點P,使得P點同時滿足下列三個條件:①P是第一象限的點;②P點到l1的距離是P點到l2的距離的
1
2
;③P點到l1的距離與P點到l3的距離之比是
2
5
?若能,求P點坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在△ABC的長邊AB上取AN=AC,BM=BC,點I為三角形ABC的內(nèi)心 求證:
(1)點I是△MNC的外心;
(2)∠MIN=∠ABC+∠BAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=sin(ωx-
π
6
),ω>0,若函數(shù)f(x)的圖象與直線y=m(m為常數(shù))相切,并且切點的橫坐標(biāo)依次成公差為π的等差數(shù)列.
(1)求ω及m的值;
(2)將函數(shù)y=f(x)的圖象向左平移
π
12
,得到y(tǒng)=g(x)的圖象,當(dāng)x∈(
π
2
,
4
)時,g(x)=cosα的交點橫坐標(biāo)依次為x1,x2,x3,若x1,x2,x3-
π
4
構(gòu)成等差數(shù)列,求鈍角α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},an≥0,a1=0,an+12+an+1-1=an2(n∈N+).請用數(shù)學(xué)歸納法證明:當(dāng)n∈N+時,an<an+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(3x+1)=3x2-x+1,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+x2-xlna,a>1.
(1)求證函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(2)若函數(shù)y=|f(x)-b+
1
b
|-3有四個零點,求b的取值范圍;
(3)若對于任意的x∈[-1,1]時,都有f(x)≤e2-1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:①當(dāng)x∈[1,e2]時,f(x)=lnx;②當(dāng)x∈[
1
e2
,1)時,f(x)•f(
1
x
)=1.若函數(shù)g(x)=f(x)-ax,x∈[
1
e2
,e2]有兩個不同零點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案