3.若函數(shù)f(x)=$\left\{{\begin{array}{l}{x+1,x≤0}\\{{x^2},x>0}\end{array}}$,則f(2)=4.

分析 直接利用函數(shù)的解析式求解函數(shù)值即可.

解答 解:函數(shù)f(x)=$\left\{{\begin{array}{l}{x+1,x≤0}\\{{x^2},x>0}\end{array}}$,則f(2)=4.
故答案為:4.

點(diǎn)評 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知$\overrightarrow a$=(m,2),$\overrightarrow b$=(1,m-1),若$\overrightarrow a$∥$\overrightarrow b$,且方向相同,則|$\overrightarrow{a}$|=( 。
A.$\sqrt{2}$B.$2\sqrt{2}$C.$\sqrt{5}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,n∈N*,a3=5,S10=100.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2an+an•sin2$\frac{nπ}{2}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.復(fù)數(shù)z滿足$\frac{z}{1-z}$=2i,則z平面內(nèi)對應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.1977年是高斯誕辰200周年,為紀(jì)念這位偉大的數(shù)學(xué)家對復(fù)數(shù)發(fā)展所做出的杰出貢獻(xiàn),德國特別發(fā)行了一枚郵票(如圖).這枚郵票上印有4個(gè)復(fù)數(shù),其中的兩個(gè)復(fù)數(shù)的和:(4+4i)+(-5+6i)=( 。
A.-1+10iB.-2+9iC.9-2iD.10-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.趙州橋是當(dāng)今世界上建造最早、保存最完整的我國古代單孔敞肩石拱橋(圖一).若以趙州橋跨徑AB所在直線為x軸,橋的拱高OP所在直線為y軸,建立平面直角坐標(biāo)系(圖二),有橋的圓拱APB所在的圓的方程為x2+(y+20.7)2=27.92.求|OP|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知復(fù)數(shù)z=$\frac{15i}{3+4i}$,則z的虛部為( 。
A.-$\frac{9}{5}$iB.$\frac{9}{5}$iC.-$\frac{9}{5}$D.$\frac{9}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知圓O:x2+y2=1和定點(diǎn)A(2,1),由圓O外一點(diǎn)P(a,b)向圓O引切線PQ,切點(diǎn)為Q,且滿足|PQ|=|PA|.
(1)求實(shí)數(shù)a、b間滿足的等量關(guān)系;
(2)求線段PQ長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)在其定義域中,既是奇函數(shù)又是增函數(shù)的(  )
A.y=x+1B.y=-x2C.y=x|x|D.$y=\frac{1}{x}$

查看答案和解析>>

同步練習(xí)冊答案