【題目】設(shè)D為不等式組 ,表示的平面區(qū)域,點B(a,b)為第一象限內(nèi)一點,若對于區(qū)域D內(nèi)的任一點A(x,y)都有 成立,則a+b的最大值等于( )
A.0
B.1
C.2
D.3
【答案】C
【解析】解:∵點B(a,b)為第一象限內(nèi)一點,∴a>0,b>0,
又區(qū)域D內(nèi)的任一點A(x,y),
∴z= ,
由約束條件 作出可行域如圖:
化z=ax+by為y= ,
由圖可知,當(dāng) ,即a≥b時,
直線y= 過A(1,0)時,直線在y軸上的截距最大,z有最大值為a,則a≤1;
當(dāng) ,即a<b時,直線y= 過C(0,1)時,
直線在y軸上的截距最大,z有最大值為b,則b≤1.
∴點B(a,b)滿足 或 .
作出可行域如圖:
令t=a+b,化為b=﹣a+t,由圖可知,當(dāng)直線b=﹣a+t過D(1,1)時,
直線在b軸上的截距最大,t有最大值為1+1=2.
故選:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(0,+∞)上的函數(shù)y=f(x)的反函數(shù)為y=f﹣1(x),若g(x)= 為奇函數(shù),則f﹣1(x)=2的解為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將圓 為參數(shù))上的每一點的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼? 倍,得到曲線C.
(1)求出C的普通方程;
(2)設(shè)直線l:x+2y﹣2=0與C的交點為P1 , P2 , 以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系, 求過線段P1P2的中點且與l垂直的直線的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上周期為2的奇函數(shù),當(dāng)0≤x≤1時,f(x)=x2﹣x,則 =( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)國務(wù)院批復(fù)同意,鄭州成功入圍國家中心城市,某校學(xué)生團(tuán)針對“鄭州的發(fā)展環(huán)境”對20名學(xué)生進(jìn)行問卷調(diào)查打分(滿分100分),得到如圖1所示莖葉圖.
(Ⅰ)分別計算男生女生打分的平均分,并用數(shù)學(xué)特征評價男女生打分的數(shù)據(jù)分布情況;
(Ⅱ)如圖2按照打分區(qū)間[0,60)、[60,70)、[70,80)、[80,90)、[90,100]繪制的直方圖中,求最高矩形的高;
(Ⅲ)從打分在70分以下(不含70分)的同學(xué)中抽取3人,求有女生被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北宋數(shù)學(xué)家沈括的主要數(shù)學(xué)成就之一為隙積術(shù),所謂隙積,即“積之有隙”者,如累棋、層壇之類,這種長方臺形狀的物體垛積.設(shè)隙積共n層,上底由長為a個物體,寬為b個物體組成,以下各層的長、寬依次各增加一個物體,最下層成為長為c個物體,寬為d個物體組成,沈括給出求隙積中物體總數(shù)的公式為S= .已知由若干個相同小球粘黏組成的幾何體垛積的三視圖如圖所示,則該垛積中所有小球的個數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣(a+2)x+alnx,其中常數(shù)a>0. (Ⅰ)當(dāng)a>2時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)定義在D上的函數(shù)y=h(x)在點P(x0 , h(x0))處的切線方程為l:y=g(x),若 >0在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對稱點”.當(dāng)a=4時,試問y=f(x)是否存在“類對稱點”,若存在,請至少求出一個“類對稱點”的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個小球從100米高處自由落下,每次著地后又跳回到原高度的一半再落下.執(zhí)行下面的程序框圖,則輸出的S表示的是( )
A.小球第10次著地時向下的運動共經(jīng)過的路程
B.小球第11次著地時向下的運動共經(jīng)過的路程
C.小球第10次著地時一共經(jīng)過的路程
D.小球第11次著地時一共經(jīng)過的路程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),圓C的方程為x2+y2﹣4x﹣2y+4=0.以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系.
(1)求l的普通方程與C的極坐標(biāo)方程;
(2)已知l與C交于P,Q,求|PQ|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com