(本小題滿分14分)

已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間和極值;

(Ⅱ)已知函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對稱,證明當時,

(Ⅲ)如果,且,證明

【解析】本小題主要考查導數(shù)的應用,利用導數(shù)研究函數(shù)的單調(diào)性與極值等基礎(chǔ)知識,考查運算能力及用函數(shù)思想分析解決問題的能力,滿分14分

(Ⅰ)解:f’

令f’(x)=0,解得x=1

當x變化時,f’(x),f(x)的變化情況如下表

X

()

1

()

f’(x)

+

0

-

f(x)

極大值

所以f(x)在()內(nèi)是增函數(shù),在()內(nèi)是減函數(shù)。

函數(shù)f(x)在x=1處取得極大值f(1)且f(1)=

(Ⅱ)證明:由題意可知g(x)=f(2-x),得g(x)=(2-x)

令F(x)=f(x)-g(x),即

于是

當x>1時,2x-2>0,從而’(x)>0,從而函數(shù)F(x)在[1,+∞)是增函數(shù)。

又F(1)=F(x)>F(1)=0,即f(x)>g(x).

Ⅲ)證明:(1)

(2)若

根據(jù)(1)(2)得

由(Ⅱ)可知,>,則=,所以>,從而>.因為,所以,又由(Ⅰ)可知函數(shù)f(x)在區(qū)間(-∞,1)內(nèi)事增函數(shù),所以>,即>2.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案