3.若實(shí)數(shù)x,y滿足x2+y2-8x-8y+28=0,則x2+y2的最小值為( 。
A.18B.3$\sqrt{2}$C.36-16$\sqrt{2}$D.4$\sqrt{2}$-2

分析 方程表示一個圓,而x2+y2的表示圓上的點(diǎn)到原點(diǎn)距離的平方,求得圓上的點(diǎn)到原點(diǎn)的最小距離,可得x2+y2的最小值.

解答 解:方程x2+y2-8x-8y+28=0,即 (x-4)2+(y-4)2 =4,表示以C(4,4)為圓心,半徑等于2的圓.
而x2+y2的表示圓上的點(diǎn)到原點(diǎn)距離的平方,
由于圓心C到原點(diǎn)的距離CO=4$\sqrt{2}$,故圓上的點(diǎn)到原點(diǎn)的最小距離為4$\sqrt{2}$-2.
∴x2+y2的最小值為${(4\sqrt{2}-2)}^{2}$=36-16$\sqrt{2}$,
故選:C.

點(diǎn)評 本題主要考查圓的一般方程和標(biāo)準(zhǔn)方程,兩點(diǎn)間的距離公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)已知a>b>0,c>d>0.求證:$\frac{ac}{a+c}$>$\frac{bd}{b+d}$;
(2)已知c>a>b>0,求證:$\frac{a}{c-a}$>$\frac{c-b}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.銳角三角形ABC中,已知B=$\frac{π}{4}$,求$\sqrt{2}$cosA+cosC取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.化簡:$\frac{\sqrt{1-sin\frac{π}{8}}}{sin\frac{π}{16}-cos\frac{π}{16}}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知點(diǎn)M(-2,0),N(2,0),B(-1,0),動圓C與直線MN相切于點(diǎn)B,過M,N與圓C相切的兩直線相交于點(diǎn)P(異于點(diǎn)M,N),則P點(diǎn)的軌跡方程為( 。
A.x2-$\frac{{y}^{2}}{3}$=1(x>1)B.x2-$\frac{{y}^{2}}{5}$=1(x<-1)C.x2-$\frac{{y}^{2}}{3}$=1(x<0)D.x2-$\frac{{y}^{2}}{3}$=1(x<-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若函數(shù)y=loga(-1+ax)在[2,4]上是減函數(shù),則a的取值范圍是($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合A={y∈R|y=x2},B={x∈R|x2+y2=2},則A∩B=( 。
A.$[{0,\sqrt{2}}]$B.{(-1,1),(1,1)}C.{1}D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(m,1),若向量$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$平行,則$\overrightarrow{a}$•$\overrightarrow$=( 。
A.-$\frac{7}{2}$B.-$\frac{1}{2}$C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知點(diǎn)A1,A2的坐標(biāo)分別為(-2,0),(2,0).直線A1M,A2M相交于點(diǎn)M,且它們的斜率之積是$-\frac{3}{4}$.
(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)已知點(diǎn)A(1,t)(t>0)是軌跡C上的定點(diǎn),E,F(xiàn)是軌跡C上的兩個動點(diǎn),如果直線AE與直線AF的斜率存在且互為相反數(shù),求直線EF的斜率.

查看答案和解析>>

同步練習(xí)冊答案