若函數(shù)有最小值,則實(shí)數(shù)的取值范圍是        .

 

【答案】

【解析】解:因?yàn)楹瘮?shù)有最小值,內(nèi)層二次函數(shù)開(kāi)口向上,有最小值,說(shuō)明外層a大于1,單調(diào)遞增,并且由于,即解得實(shí)數(shù)的取值范圍是

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-2-x+1x≤0
f(x-1)x>0
,則下列命題中:
(1)函數(shù)f(x)在[-1,+∞)上為周期函數(shù);
(2)函數(shù)f(x)在區(qū)間[m,m+1)(m∈N)上單調(diào)遞增;
(3)函數(shù)f(x)在x=m-1(m∈N)取到最大值0,且無(wú)最小值;
(4)若方程f(x)=loga(x+2)(0<a<1),有且只有兩個(gè)實(shí)根,則a∈[
1
3
,
1
2
)

正確的命題的個(gè)數(shù)是(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+ax+
1
x2
+
a
x
+b(x∈R,且x≠0),若實(shí)數(shù)a、b使得f(x)=0有實(shí)根,則a2+b2的最小值為( 。
A、
4
5
B、
3
4
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若有下列命題:①|(zhì)x|2+|x|-2=0有四個(gè)實(shí)數(shù)解;②設(shè)a、b、c是實(shí)數(shù),若二次方程ax2+bx+c=0無(wú)實(shí)根,則ac≥0;③若x2-3x+2≠0,則x≠2,④若x∈R,則函數(shù)y=
x2+4
+
1
x2+4
的最小值為2.上述命題中是假命題的有
 

(寫出所有假命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有以下四個(gè)命題:
(1)函數(shù)f(x)=x2ex既無(wú)最小值也無(wú)最大值;
(2)在區(qū)間[-3,3]上隨機(jī)取一個(gè)數(shù)x,使得|x-1|+|x+2|≤5成立的概率為
5
6
;
(3)若不等式(m+n)(
a
m
+
1
n
)≥25對(duì)任意正實(shí)數(shù)m,n恒成立,則正實(shí)數(shù)a的最小值為16;
(4)已知函數(shù)f(x)=
5
x+1
-3,(x≥0)
x2+4x+2,(x<0)
,若方程f(x)=k(x+2)-2恰有三個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是k∈(0,2);
以上正確的序號(hào)是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年四川達(dá)州普通高中高三第一次診斷檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:填空題

以下四個(gè)命題:

①函數(shù)既無(wú)最小值也無(wú)最大值;

②在區(qū)間上隨機(jī)取一個(gè)數(shù),使得成立的概率為;

③若不等式對(duì)任意正實(shí)數(shù)恒成立,則正實(shí)數(shù)的最小值為16;

④已知函數(shù),若方程恰有三個(gè)不同的實(shí)根,則實(shí)數(shù)的取值范圍是;以上正確的命題序號(hào)是:_______.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案