若點
到點
的距離比它到直線
的距離少1,則動點
的軌跡方程是
__________.
試題分析:因為點
到點
的距離比它到直線
的距離少1,所以點
到點
的距離和它到直線
的距離相等,所以點P的軌跡是拋物線,所以動點
的軌跡方程是
。
點評:求軌跡方程的一般方法:直接法、定義法、相關點法、參數(shù)法、交軌法、向量法等。本題求軌跡方程用到的是定義法。用定義法求軌跡方程的關鍵是條件的轉化——轉化成某一已知曲線的定義條件。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
已知橢圓C的對稱軸為坐標軸,且短軸長為4,離心率為
。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C的焦點在y軸上,斜率為1的直線
l與C相交于A,B兩點,且
,求直線
l的方程。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知拋物線
的準線
與雙曲線
相切,則雙曲線
的離心率
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知動點
到
的距離比它到
軸的距離多一個單位.
(Ⅰ)求動點
的軌跡
的方程;
(Ⅱ)過點
作曲線
的切線
,求切線
的方程,并求出
與曲線
及
軸所圍成圖形的面積
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
討論方程
(
)所表示的曲線類型.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設F
1、F
2為橢圓
的左、右焦點,過橢圓中心任作一直線與橢圓交于
P、Q 兩點,當四邊形
PF1QF2面積最大時,
的值等于( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若橢圓中心在原點,對稱軸為坐標軸,長軸長為
,離心率為
,則該橢圓的方程為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若實數(shù)a、b、c成等差數(shù)列,點P(–1, 0)在動直線l:ax+by+c=0上的射影為M,點N(0, 3),則線段MN長度的最小值是 .
查看答案和解析>>