2.已知全集U=R,集合$A=\left\{{y\left|{y={{(\frac{1}{2})}^x}+1}\right.}\right\}$,集合B={y|y=b,b∈R},若A∩B=∅,則b的取值范圍是( 。
A.b<0B.b≤0C.b<1D.b≤1

分析 先分別求出集合A={y|y>1},集合B={y|y=b,b∈R},由此利用A∩B=∅,能求出b的取值范圍.

解答 解:∵全集U=R,集合$A=\left\{{y\left|{y={{(\frac{1}{2})}^x}+1}\right.}\right\}$={y|y>1},
集合B={y|y=b,b∈R},A∩B=∅,
∴b≤1
∴b的取值范圍是{b|b≤1}.
故選:D.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知向量$\overrightarrow a$和$\overrightarrow b$的夾角為120°,且$|\overrightarrow a|=2,|\overrightarrow b|=1$.
(1)求$(2\overrightarrow a-\overrightarrow b)•\overrightarrow a$的值;
(2)求$|\overrightarrow a+2\overrightarrow b|$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=$\frac{1}{2}$AD,E為AD的中點(diǎn),異面直線AP與CD所成的角為90°.
(Ⅰ)證明:△PBE是直角三角形;
(Ⅱ)若二面角P-CD-A的大小為45°,求二面角A-PE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,三棱柱ABC-A1B1C1中,側(cè)面ABB1A1為菱形且$∠BA{A_1}={60^o}$,D,M分別為CC1和A1B的中點(diǎn),A1D⊥CC1,AA1=A1D=2,BC=1.
(Ⅰ)證明:直線MD∥平面ABC;
(Ⅱ)求二面角B-AC-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,四棱錐D-ABCM中,AD⊥DM,底面四邊形ABCM是直角梯形,AB⊥BC,MC⊥BC,且AB=2BC=2CM=4,平面AMD⊥平面ABCM.
(Ⅰ)證明:AD⊥BD;
(Ⅱ)若AD=DM,
(i)求直線BD與平面AMD所成角的正弦值;
(ii)求三棱錐D-MBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,若$\overrightarrow a與\overrightarrow b的夾角為\frac{π}{3}$,則$\overrightarrow a•({\overrightarrow a+\overrightarrow b})$的值等于( 。
A.4B.5C.6D.$4+\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.tan40°+tan80°-$\sqrt{3}$tan40°tan80°的值是( 。
A.$\sqrt{3}$B.$-\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.“a=-1”是“直線ax+3y+3=0與直線x+(a-2)y-3=0平行”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.某河道中過(guò)度滋長(zhǎng)一種藻類,環(huán)保部門(mén)決定投入生物凈化劑凈化水體.因技術(shù)原因,第t分鐘內(nèi)投放凈化劑的路徑長(zhǎng)度p=140-|t-40|(單位:m),凈化劑凈化水體的寬度q(單位:m)是時(shí)間t(單位:分鐘)的函數(shù):q(t)=1+a2t(a由單位時(shí)間投放的凈化劑數(shù)量確定,設(shè)a為常數(shù),且a∈N*).
(1)試寫(xiě)出投放凈化劑的第t分鐘內(nèi)凈化水體面積S(t)(1≤t≤60,t∈N*)的表達(dá)式;
(2)求S(t)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案