設(shè)函數(shù)f(x)(x∈R)滿足f(-x)=f(x),f(x)=f(2-x),且當(dāng)x∈[0,1]時(shí),f(x)=x3,又函數(shù)g(x)=|cos(πx)|,則函數(shù)h(x)=g(x)-f(x)在[-
1
2
3
2
]上的零點(diǎn)個(gè)數(shù)為( 。
A、8B、7C、6D、5
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:計(jì)算題,作圖題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意函數(shù)h(x)=g(x)-f(x)在[-
1
2
,
3
2
]上的零點(diǎn)個(gè)數(shù)可化為函數(shù)g(x)與函數(shù)f(x)的交點(diǎn)個(gè)數(shù),作圖分析即可.
解答: 解:函數(shù)h(x)=g(x)-f(x)在[-
1
2
,
3
2
]上的零點(diǎn)個(gè)數(shù)可化為
函數(shù)g(x)與函數(shù)f(x)的交點(diǎn)個(gè)數(shù),
由題意作出函數(shù)g(x)與函數(shù)f(x)的圖象如下:

由圖可知,有5個(gè)交點(diǎn),
故選D.
點(diǎn)評(píng):本題考查了函數(shù)的零點(diǎn)與函數(shù)圖象的交點(diǎn)的關(guān)系,同時(shí)考查了學(xué)生的作圖能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)θ是第二象限角,且sin 
θ
2
+cos 
θ
2
<0,則sin 
θ
2
,cos 
θ
2
,tan 
θ
2
的大小關(guān)系是( 。
A、sin 
θ
2
<cos 
θ
2
<tan 
θ
2
B、cos 
θ
2
<sin 
θ
2
<tan 
θ
2
C、sin 
θ
2
<tan 
θ
2
<cos 
θ
2
D、tan 
θ
2
<sin 
θ
2
<cos 
θ
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,既是奇函數(shù)又在(0,+∞)上單調(diào)遞減的函數(shù)是( 。
A、y=
1
x
B、y=e-x
C、y=-tanx
D、y=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=3-
1
3
,b=log2
1
3
,c=log
1
2
1
3
,則(  )
A、a>b>c
B、a>c>b
C、c>a>b
D、c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在(-∞,0)∪(0,+∞)上的函數(shù)f(x)滿足f(-x)=f(x),當(dāng)a,b∈(-∞,0)時(shí)總有
f(a)-f(b)
a-b
>0(a≠b),若f(m+1)>f(2m),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)an(n=2,3,4,…)是(2+x)n的展開(kāi)式中x2項(xiàng)的系數(shù),則
2010
2009
×(
22
a2
+
23
a3
+
24
a4
+…+
22010
a2010
)=( 。
A、8B、4C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)l,m,n表示三條直線,α,β表示兩個(gè)平面,給出下列四個(gè)命題:
①若l∥m,l⊥α,則m⊥α;
②若m⊆β,n是l在β內(nèi)的射影,m⊥l,則m⊥n;
③若l⊥α,α⊥β,則l∥β;
④若l⊥α,α∥β,m?β,則l⊥m.
其中真命題為( 。
A、①②④B、①②③
C、①③D、①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos2x+
3
sinxcosx-
1
2

(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)若f(a)=
4
5
,f(β+
π
6
)=
12
13
,且-
π
12
<a<
π
6
,-
π
4
<β<0,求f(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=(m-1)x2+2mx+3為偶函數(shù),則f(x)在區(qū)間(-7,-2)上是(  )
A、減函數(shù)B、先減后增函數(shù)
C、增函數(shù)D、先增后減函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案