(理)已知函數(shù)
(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)右圖給出的是與函數(shù)f(x)相關(guān)的一個(gè)程序框圖,試構(gòu)造一個(gè)公差不為零的等差數(shù)列{an},使得該程序能正常運(yùn)行且輸出的結(jié)果恰好為0.請說明你的理由.

【答案】分析:(1)先求出函數(shù)的定義域,得到定義域關(guān)于原點(diǎn)對稱,在檢驗(yàn)-x與x的函數(shù)值之間的關(guān)系,得到奇函數(shù).
(2)根據(jù)單調(diào)性的定義,設(shè)出已知大小關(guān)系的任意兩個(gè)變量,利用定義證明函數(shù)的單調(diào)性,得到函數(shù)是一個(gè)增函數(shù).
(3)由程序框圖知,公差不為零的等差數(shù)列{an}要滿足條件,則必有f(a1)+f(a2)+…+f(a10)=0.所以要構(gòu)造滿足條件的等差數(shù)列{an},可利用等差數(shù)列的性質(zhì),只需等差數(shù)列{an}滿足:a1+a10=a2+a9═a5+a6=0.
解答:解:(1)由
,
,任取 ,
都有f(-x)==-f(x),則該函數(shù)為奇函數(shù).
(2)任取0<x1<x2<1,
則有0<x12<x22<1⇒2-x12>2-x22>1,⇒ln(2-x12)>ln(2-x22)>0.
,
所以
即f(x1)>f(x2),
故函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞減.
(3)由程序框圖知,公差不為零的等差數(shù)列{an}要滿足條件,
則必有f(a1)+f(a2)+…+f(a10)=0.
由(1)知函數(shù)f(x)是奇函數(shù),而奇函數(shù)的圖象關(guān)于原點(diǎn)對稱,
所以要構(gòu)造滿足條件的等差數(shù)列{an},可利用等差數(shù)列的性質(zhì),只需等差數(shù)列{an}
滿足:a1+a10=a2+a9═a5+a6=0
即可.
我們可以先確定a5,a6使得a5+a6=0,因?yàn)楣畈粸榱愕牡炔顢?shù)列{an}必是單調(diào)的數(shù)列,只要它的最大項(xiàng)和最小項(xiàng)在 中,即可滿足要求.
所以只要a5,a6
對應(yīng)的點(diǎn)盡可能的接近原點(diǎn).如取a5=-0.1,a6=0.1,存在滿足條件的一個(gè)等差數(shù)列{an}可以是an=0.2n-1.1(1≤n≤10,n∈N*).
點(diǎn)評:本題主要考查函數(shù)的奇偶性、單調(diào)性,以及借助于程序框圖考查等差數(shù)列的有關(guān)性質(zhì),解題的關(guān)鍵是看清題目的實(shí)質(zhì),抓住解題的主要方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年博興二中綜合一理)(12分)已知函數(shù)。

(1)寫出f(x)的單調(diào)區(qū)間;     (2)解不等式f(x)<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年濟(jì)寧質(zhì)檢理)(12分)

  已知函數(shù)

(1)求函數(shù)的最小正周期;

(2)在給定的坐標(biāo)系內(nèi),用五點(diǎn)作圖法畫出函數(shù)在一個(gè)周期內(nèi)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年天津南開區(qū)質(zhì)檢一理)(12分)

已知函數(shù)。

(1)求的值;

(2)求的最小正周期和在區(qū)間上的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年天津南開區(qū)質(zhì)檢一理)(12分)

已知函數(shù)。

(1)若函數(shù)的導(dǎo)函數(shù)是奇函數(shù),求的值;

(2)求函數(shù)的單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山西省高三期中考試數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)A(理)已知函數(shù),其中.

(1)若存在,使得成立,求實(shí)數(shù)的取值范圍;

(2)求函數(shù)的值域.

 

查看答案和解析>>

同步練習(xí)冊答案