如圖,設(shè)AB,CD為⊙O的兩直徑,過B作PB垂直于AB,并與CD延長線相交于點(diǎn)P,過P作直線與⊙O分別交于E,F(xiàn)兩點(diǎn),連結(jié)AE,AF分別與CD交于G、H
(Ⅰ)設(shè)EF中點(diǎn)為,求證:O、、B、P四點(diǎn)共圓
(Ⅱ)求證:OG =OH.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,且過點(diǎn).
(1)求橢圓的方程;
(2)若過點(diǎn)C(-1,0)且斜率為的直線與橢圓相交于不同的兩點(diǎn),試問在軸上是否存在點(diǎn),使是與無關(guān)的常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知曲線上任意一點(diǎn)到點(diǎn)的距離與到直線的距離相等.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè),是軸上的兩點(diǎn),過點(diǎn)分別作軸的垂線,與曲線分別交于點(diǎn),直線與x軸交于點(diǎn),這樣就稱確定了.同樣,可由確定了.現(xiàn)已知,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分別為矩形四條邊的中點(diǎn),以HF、GE所在直線分別為x,y軸建立直角坐標(biāo)系(如圖所示).若R、R′分別在線段0F、CF上,且.
(Ⅰ)求證:直線ER與GR′的交點(diǎn)P在橢圓:+=1上;
(Ⅱ)若M、N為橢圓上的兩點(diǎn),且直線GM與直線GN的斜率之積為,求證:直線MN過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,曲線上任意一點(diǎn)分別與點(diǎn)、連線的斜率的乘積為.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)直線與軸、軸分別交于、兩點(diǎn),若曲線與直線沒有公共點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知、分別是橢圓: 的左、右焦點(diǎn),點(diǎn)在直線上,線段的垂直平分線經(jīng)過點(diǎn).直線與橢圓交于不同的兩點(diǎn)、,且橢圓上存在點(diǎn),使,其中是坐標(biāo)原點(diǎn),是實數(shù).
(Ⅰ)求的取值范圍;
(Ⅱ)當(dāng)取何值時,的面積最大?最大面積等于多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C:的半徑等于橢圓E:(a>b>0)的短半軸長,橢圓E的右焦點(diǎn)F在圓C內(nèi),且到直線l:y=x-的距離為-,點(diǎn)M是直線l與圓C的公共點(diǎn),設(shè)直線l交橢圓E于不同的兩點(diǎn)A(x1,y1),B(x2,y2).
(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
給定橢圓: ,稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”.若橢圓的一個焦點(diǎn)為,且其短軸上的一個端點(diǎn)到的距離為.
(Ⅰ)求橢圓的方程和其“準(zhǔn)圓”方程;
(Ⅱ)點(diǎn)是橢圓的“準(zhǔn)圓”上的一個動點(diǎn),過動點(diǎn)作直線,使得與橢圓都只有一個交點(diǎn),試判斷是否垂直,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的左右焦點(diǎn)坐標(biāo)分別是,離心率,直線與橢圓交于不同的兩點(diǎn).
(1)求橢圓的方程;
(2)求弦的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com