(2013•重慶)設數(shù)列{an}滿足:a1=1,an+1=3an,n∈N+
(1)求{an}的通項公式及前n項和Sn;
(2)已知{bn}是等差數(shù)列,Tn為前n項和,且b1=a2,b3=a1+a2+a3,求T20

(1)Sn=      (2)1010

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設等差數(shù)列的前項和滿足
(1)求的通項公式;
(2)求的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是一個公差大于0的等差數(shù)列,且滿足.
(1)求數(shù)列的通項公式;
(2)若數(shù)列和數(shù)列滿足等式:(n為正整數(shù))求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

的三個內(nèi)角成等差數(shù)列,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2013·杭州模擬)已知數(shù)列{an}的前n項和Sn=-ann-1+2(n∈N*),數(shù)列{bn}滿足bn=2nan
(1)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項公式.
(2)設數(shù)列的前n項和為Tn,證明:n∈N*且n≥3時,Tn
(3)設數(shù)列{cn}滿足an(cn-3n)=(-1)n-1λn(λ為非零常數(shù),n∈N*),問是否存在整數(shù)λ,使得對任意n∈N*,都有cn+1>cn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在等差數(shù)列中,,前項和滿足條件,
(1)求數(shù)列的通項公式和;(2)記,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的各項都為正數(shù),。
(1)若數(shù)列是首項為1,公差為的等差數(shù)列,求
(2)若,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

是首項為,公差為的等差數(shù)列(d≠0),是其前項和.記bn=,
,其中為實數(shù).
(1) 若,且,成等比數(shù)列,證明:Snk=n2Sk(k,n∈N+);
(2) 若是等差數(shù)列,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在等差數(shù)列{an}中,a1+a3=8,且a4為a2和a9的等比中項,求數(shù)列{an}的首項、公差及前n項和.

查看答案和解析>>

同步練習冊答案