分析 (Ⅰ)連接AE,證明Rt△CBD∽Rt△CEA,結(jié)合AB=AC,即可證明:AB•CB=CD•CE;
(Ⅱ)證明△ABF~△BCF,可得AC=CF,利用切割線定理有FA•FC=FB2,求出AC,即可求△ABC的面積.
解答 證明:(Ⅰ)連接AE,∵CE是直徑,∴∠CAE=90°,
又CD⊥AB,∴∠CDB=90°,
∵∠CBD=∠CEA,故Rt△CBD∽Rt△CEA,…(2分)
∴$\frac{CD}{CB}=\frac{AC}{CE}$,∴AC•CB=CD•CE
又AB=AC,∴AB•CB=CD•CE.…(5分)
(Ⅱ)∵FB是⊙O的切線,∴∠CBF=∠CAB.
∴在△ABF和△BCF中,$\left\{\begin{array}{l}∠FAB=∠FBC\\∠AFB=∠CFB\end{array}\right.$,∴△ABF~△BCF,
∴$\frac{FB}{BC}=\frac{AF}{AB}=\frac{{2\sqrt{2}}}{{\sqrt{2}}}=2$,∴FA=2AB=2AC,∴AC=CF…(7分)
設(shè)AC=x,則根據(jù)切割線定理有FA•FC=FB2
∴x•2x=8,∴x=2,
∴${S_{△ABC}}=\frac{1}{2}×\sqrt{2}×\sqrt{4-\frac{1}{2}}=\frac{{\sqrt{7}}}{2}$.…(10分)
點評 本題主要考查了切線的性質(zhì)及其應(yīng)用,同時考查了相似三角形的判定和切割線定理等知識點,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 14 | B. | $\frac{{21\sqrt{3}}}{2}$ | C. | 22 | D. | $\frac{{27\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{64}{3}$ | B. | $\frac{32}{3}$ | C. | $\frac{64}{3}$或32 | D. | $\frac{32}{3}$或$\frac{64}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com