1.已知函數(shù)f(x)=|2x-a|+|x-1|,a∈R.
(Ⅰ)若不等式f(x)≥2-|x-1|恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=1時(shí),直線y=m與函數(shù)f(x)的圖象圍成三角形,求m的取值范圍.

分析 (Ⅰ)問(wèn)題轉(zhuǎn)化為$(|x-\frac{a}{2}|+|x-1|{)_{min}}≥1$成立,根據(jù)絕對(duì)值的性質(zhì)求出其最小值,從而求出a的范圍即可;
(Ⅱ)求出f(x)的分段函數(shù)的形式,畫出函數(shù)的圖象,結(jié)合圖象求出m的范圍即可.

解答 解:( I)∵f(x)≥2-|x-1|恒成立,
即$|x-\frac{a}{2}|+|x-1|≥1$恒成立,
∴$(|x-\frac{a}{2}|+|x-1|{)_{min}}≥1$成立,(2分)
由$|x-\frac{a}{2}|+|x-1|≥|x-\frac{a}{2}-x+1|=|\frac{a}{2}-1|$得$|\frac{a}{2}-1|≥1$,(3分)
解得:a≤0或a≥4,所以a的取值范圍為(-∞,0]∪[4,+∞).(4分)
(Ⅱ)當(dāng)a=1時(shí),$f(x)=|2x-1|+|x-1|=\left\{\begin{array}{l}2-3x,(x≤\frac{1}{2})\\ x,(\frac{1}{2}<x<1)\\ 3x-2,(x≥1)\end{array}\right.$(6分)
做出f(x)的圖象,如圖所示:
(8分)
可知,當(dāng)$\frac{1}{2}<m≤1$時(shí),直線y=m與函數(shù)的圖象圍成三角形,
即所求m的取值范圍為$(\frac{1}{2},1]$. (10分)

點(diǎn)評(píng) 本題考查了解絕對(duì)值不等式問(wèn)題,考查絕對(duì)值的性質(zhì)以及數(shù)形結(jié)合思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=|x+1|+2|x-a|.
(Ⅰ)若a=1,求不等式f(x)>2的解集;
(II)若函數(shù)y=f(x)的最小值為5,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\sqrt{5}cosα}\\{y=\sqrt{5}sinα}\end{array}\right.$(α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1的極坐標(biāo)方程;
(2)若直線C2的極坐標(biāo)方程為θ=$\frac{π}{3}$(ρ∈R),設(shè)C2與C1交于點(diǎn)P,Q,求|PQ|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知在△ABC中,a,b,c分別是角A,B,C所對(duì)應(yīng)的邊,且a-2b=0.
(1)若$B=\frac{π}{6}$,求C;
(2)若$C=\frac{2}{3}π,c=14$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.直角坐標(biāo)系xOy中,曲線C:x2+(y-1)2=4與y軸負(fù)半軸交于點(diǎn)K,直線l與C相切于K,T為C上任意一點(diǎn),T′為T在l上的射影,P為T,T'的中點(diǎn).
(Ⅰ)求動(dòng)點(diǎn)P的軌跡Γ的方程;
(Ⅱ)軌跡Γ與x軸交于A,B,點(diǎn)M,N為曲線Γ上的點(diǎn),且OM∥AP,ON∥BP,試探究三角形OMN的面積是否為定值,若為定值,求出該值;若非定值,求其取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)函數(shù)f(x)=2|x+1|+|x-3|.
(1)求不等式f(x)<5的解集;
(2)設(shè)g(x)=kx,若f(x)≥g(x)恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列積分的值等于1的是( 。
A.$\int_0^1{xdx}$B.${∫}_{0}^{1}$(x+1)dxC.${∫}_{0}^{1}$1dxD.${∫}_{0}^{1}$$\frac{1}{2}$dx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知圓C的方程為(x-3)2+(y-4)2=16,過(guò)直線l:6x+8y-5a=0(a>0)上的任意一點(diǎn)作圓的切線,若切線長(zhǎng)的最小值為$2\sqrt{5}$,則直線l在y軸上的截距為$\frac{55}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為e,D為右準(zhǔn)線上一點(diǎn).
(1)若e=$\frac{1}{2}$,點(diǎn)D的橫坐標(biāo)為4,求橢圓的方程;
(2)設(shè)斜率存在的直線l經(jīng)過(guò)點(diǎn)P($\frac{3a}{4}$,0),且與橢圓交于A,B兩點(diǎn).若$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\overrightarrow{OD}$,DP⊥l,求橢圓離心率e.

查看答案和解析>>

同步練習(xí)冊(cè)答案