某廠以x千克/小時的速度勻速生產(chǎn)一種產(chǎn)品(生產(chǎn)條件要求1≤x≤5),每小時可獲得的利潤是100(8x+1-
2
x
)元.
(1)要使生產(chǎn)該產(chǎn)品每小時獲得的利潤不低于1600元,求x的取值范圍;
(2)要使生產(chǎn)1000千克該產(chǎn)品獲得的利潤最大,問該廠應怎樣選取生產(chǎn)速度?并求此最大利潤.
考點:函數(shù)模型的選擇與應用
專題:應用題,函數(shù)的性質及應用
分析:(1)求出生產(chǎn)該產(chǎn)品1小時獲得的利潤,建立不等式,然后解一元二次不等式即可求x的取值范圍;
(2)確定生產(chǎn)1000千克該產(chǎn)品獲得的利潤函數(shù),利用配方法,從而可求出最大利潤.
解答: 解:(1)根據(jù)題意,100(8x+1-
2
x
)≥1600,即8x2-15x-2≥0
∴x≥2或x≤-
1
8
,
∵1≤x≤5,∴2≤x≤5,
即x的取值范圍是2≤x≤5;
(2)設生產(chǎn)1000千克該產(chǎn)品獲得的利潤為y元,則
y=100(8x+1-
2
x
)×
1000
x

=10000[-3(
1
x
-
1
4
2+
65
8
],
∵1≤x≤5,
∴x=4時,取得最大利潤為812500元,
故該廠應以4千克/小時的速度生產(chǎn),可獲得最大利潤為812500元.
點評:本題考查函數(shù)模型的建立,考查解不等式,考查函數(shù)的最值,確定函數(shù)的模型是關鍵.屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

二項式(x+2)10展開式中,二項式系數(shù)最大的項是(  )
A、第5項B、第6項
C、第7項D、第5、6項

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有50件產(chǎn)品編號從1到50,現(xiàn)在從中抽取5件檢驗,用系統(tǒng)抽樣確定所抽取的樣本編號可能為( 。
A、5,10,15,20,25
B、9,19,29,39,49
C、2,13,24,35,46
D、5,15,20,30,40

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
,
b
,
c
滿足
c
=
a
+
b

(Ⅰ)若
a
=(3,1),
b
=(1,y),
a
c
,求實數(shù)y的值;
(Ⅱ)若|
b
|=2|
a
|≠0,
a
c
,求向量
a
,
b
的夾角θ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
(cos2x-sin2x)+2sinxcosx.
(1)求f(x)的最小正周期;
(2)求f(x)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(
3
,1),
b
=(2,2
3
).
(1)求
a
b
;
(2)求
a
b
的夾角θ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,游樂場中的摩天輪勻速旋轉,其最低點離地面5米,如果以你從最低點登上摩天輪的時刻開始計時,那么你與地面的距離y (m) 隨時間x (min)變化的關系將如圖所示(該圖象近似于y=Asin(ωx+φ)+b(A>0,ω>0,-π≤φ≤0)的圖象).

(Ⅰ)求出y(m)和x(min)的函數(shù)關系式;
(Ⅱ)當你第四次距離地面65米時與第一次距離地面65米時相隔多少時間?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sinωx+cosωx-1(ω>0),其最小正周期為3π.
(1)求函數(shù)f(x)的表達式;
(2)在△ABC中,若f(B)=1,且2sin2C-cosC=sin(B-C),求角B與cosC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點P(x,y)是不等式組
x+y≤3
x-y≥-1
x+3y≥3
表示的平面區(qū)域內的一點,點Q的坐標是(2,-1),O為坐標原點,則
OP
OQ
的最小值是
 

查看答案和解析>>

同步練習冊答案