分析 (Ⅰ)由1-3x≠0得x≠0,求得函數(shù)f(x)的定義域,由3x=$\frac{f(x)-1}{f(x)+1}$>0,求得f(x)的范圍,可得f(x)的值域.
(Ⅱ)因為函數(shù)f(x)的定義域關(guān)于原點對稱,且滿足f(-x)=-f(x),可得f(x)為奇函數(shù).
解答 解:(Ⅰ)由1-3x≠0得x≠0,
故函數(shù)f(x)的定義域為(-∞,0)∪(0,+∞).
由f(x)=$\frac{1+{3}^{x}}{1-{3}^{x}}$,可得3x=$\frac{f(x)-1}{f(x)+1}$>0,
求得f(x)>1,或f(x)<-1,
f(x)的值域為(-∞,-1)∪(1,+∞).
(Ⅱ)f(x)為奇函數(shù),理由如下:
因為函數(shù)f(x)的定義域為(-∞,0)∪(0,+∞),
且$f(-x)=\frac{{1+{3^{-x}}}}{{1-{3^{-x}}}}=\frac{{{3^x}+1}}{{{3^x}-1}}=-f(x)$,
所以,f(x)為奇函數(shù).
點評 本題主要考查求函數(shù)的定義域和值域,函數(shù)的奇偶性的判斷方法,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[50,60) | 4 | 0.08 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | 0.20 |
[80,90) | 16 | 0.32 |
[90,100] | 12 | 0.24 |
合計 | 50 | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{7}}{2}$ | B. | $\frac{\sqrt{13}}{3}$ | C. | $\frac{5}{3}$ | D. | $\frac{\sqrt{21}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(sinα)>f(sinβ) | B. | f(cosα)>f(cosβ) | C. | f(sinα)>f(cosβ) | D. | f(sinα)<f(cosβ) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-$\sqrt{3}$,$\sqrt{3}$] | B. | [-3,3] | C. | [-$\sqrt{3}$,3] | D. | [-3,$\sqrt{3}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com