已知an+1=an+2n,a1=2,n∈N*,猜想an=
n2-n+2
n2-n+2
分析:利用遞推公式,依次求出a2,a3,a4,…,再進行歸納猜想.
解答:解:當n=1時,a2=a1+2×1=2+2=4
當n=2時,a3=a2+2×2=4+2=8
當n=3時,a4=a3+2×3=8+6=14

猜測 an=n2-n+2
故答案為:an=n2-n+2
點評:本題考查數(shù)列遞推公式,通項公式的基本知識和能力,考查歸納猜想能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項和為Sn,已知an-1+an+1-an2=0,S2n-1=38,則n=( 。
A、38B、20C、10D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1、已知an+1-an-2=0,則數(shù)列{an}是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點列An(xn,0),n∈N*,其中x1=0,x2=2,A3是線段A1A2的中點,A4是線段A2A3的中點,…,An是線段An-2An-1的中點,…,
(Ⅰ)寫出xn與xn-1、xn-2之間的關(guān)系式(n≥3);
(Ⅱ)設(shè)an=xn+1-xn,計算a1,a2,a3,由此推測數(shù)列{an}的通項公式,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,已知 an+1=an-4且 3a4=7a7,Sn為數(shù)列{an}的前n項和,Sn有最大值還是最小值?求出這個最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•宿州三模)在數(shù)列{an}中,已知an+1+an-1=2an(n∈N+,n≥2),若平面上的三個不共線的非零向量
OA
、
OB
、
OC
,滿足
OC
=a1005
OA
+a1006
OB
,三點A、B、C共線,且直線不過O點,則S2010等于( 。

查看答案和解析>>

同步練習(xí)冊答案