【題目】已知函數(shù).
(1)當時,恒成立,求實數(shù)的取值范圍;
(2)是否同時存在實數(shù)和正整數(shù),使得函數(shù)在上恰有2019個零點若存在,請求出所有符合條件的和的值;若不存在,請說明理由.
【答案】(1)(2)答案見解析
【解析】
(1)化簡得:,則當時,, 要使對任意恒成立,令,則,對任意恒成立,即可求得答案.
(2)若同時存在實數(shù)和正整數(shù)滿足條件,函數(shù)在上恰有2019個零點,即函數(shù)與直線在上恰有2019個交點,對進行討論,即可求得答案.
(1)化簡:
當時,,
,則
要使對任意恒成立,
令,則,對任意恒成立,
只需
解得,
實數(shù)的取值范圍為.
(2)假設同時存在實數(shù)和正整數(shù)滿足條件,函數(shù)在上恰有2019個零點,即函數(shù)與直線在上恰有2019個交點
當時,,
①當或時,函數(shù)與直線在上無交點,
②當或時,函數(shù)與直線在上僅有一個交點,
此時要使函數(shù)與直線在上恰有2019個交點,則;
③當或時,函數(shù)與直線在上有兩個交點,
此時函數(shù)與直線在上有偶數(shù)個交點,不可能有2019個交點,不符合;
④當時,函數(shù)與直線在上有2個交點,
此時要使函數(shù)與直線在上恰有2019個交點,則;
綜上所述,存在實數(shù)和正整數(shù)滿足條件:
當時,;
當時,;
當時,.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是邊長為2的正方形,SA=SB=SC=SD,點E,M,N分別是BC,CD,SC的中點,點P是MN上的一點.
(1)證明:EP∥平面SBD;
(2)求四棱錐S﹣ABCD的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次體育興趣小組的聚會中,要安排6人的座位,使他們在如圖所示的6個椅子中就坐,且相鄰座位(如1與2,2與3)上的人要有共同的體育興趣愛好.現(xiàn)已知這6人的體育興趣愛好如下表所示,且小林坐在1號位置上,則4號位置上坐的是
小林 | 小方 | 小馬 | 小張 | 小李 | 小周 | |
體育興趣愛好 | 籃球,網(wǎng)球,羽毛球 | 足球,排球,跆拳道 | 籃球,棒球,乒乓球 | 擊劍,網(wǎng)球,足球 | 棒球,排球,羽毛球 | 跆拳道,擊劍,自行車 |
A.小方B.小張C.小周D.小馬
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年5月14日,第一屆“一帶一路”國際高峰論壇在北京舉行,為了解不同年齡的人對“一帶一路”關注程度,某機構隨機抽取了年齡在15-75歲之間的100人進行調查, 經(jīng)統(tǒng)計“青少年”與“中老年”的人數(shù)之比為9:11
關注 | 不關注 | 合計 | |
青少年 | 15 | ||
中老年 | |||
合計 | 50 | 50 | 100 |
(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷能否有的把握認為關注“一帶一路”是否和年齡段有關?
(2)現(xiàn)從抽取的青少年中采用分層抽樣的辦法選取9人進行問卷調查.在這9人中再選取3人進行面對面詢問,記選取的3人中關注“一帶一路”的人數(shù)為X,求X的分布列及數(shù)學期望.
附:參考公式,其中
臨界值表:
0.05 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場舉行促銷活動,有兩個摸獎箱,箱內有一個“”號球、兩個“”號球、三個“”號球、四個無號球,箱內有五個“”號球、五個“”號球,每次摸獎后放回,消費額滿元有一次箱內摸獎機會,消費額滿元有一次箱內摸獎機會,摸得有數(shù)字的球則中獎,“”號球獎元、“”號球獎元、“”號球獎元,摸得無號球則沒有獎金.
(Ⅰ)經(jīng)統(tǒng)計,消費額服從正態(tài)分布,某天有為顧客,請估計消費額(單位:元)在區(qū)間內并中獎的人數(shù);
(Ⅱ)某三位顧客各有一次箱內摸獎機會,求其中中獎人數(shù)的分布列;
(Ⅲ)某顧客消費額為元,有兩種摸獎方法,方法一:三次箱內摸獎機會;方法二:一次箱內摸獎機會,請問:這位顧客選哪一種方法所得獎金的期望值較大.
附:若,則
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是
A. y與x具有正的線性相關關系
B. 回歸直線過樣本點的中心(,)
C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com