(本小題滿分12分)

如圖,已知分別是正方形、的中點,交于點,都垂直于平面,且, 是線段上一動點.

       (Ⅰ)求證:平面平面;

       (Ⅱ)若平面,試求的值;

       (Ⅲ)當中點時,求二面角的余弦值.

解析:法1:(Ⅰ)連結(jié),

平面平面,

又∵,

平面,

又∵分別是、的中點,

,

平面,又平面,

∴平面平面;---------------------------------------4分

(Ⅱ)連結(jié)

平面,平面平面

,

,故  ----------------------------6分

(Ⅲ)∵平面平面,∴,

在等腰三角形中,點的中點,∴,

為所求二面角的平面角, ---------------------------------8分

∵點的中點,∴

所以在矩形中,可求得,,

--------------------10分

中,由余弦定理可求得

∴二面角的余弦值為.------------------------------12分

法2:(Ⅰ)同法1;

(Ⅱ)建立如圖所示的直角坐標系,則,,,,

,,

設點的坐標為,平面的法向量為,則,

       所以,即,令,則,,

平面,∴,即,解得,

,即點為線段上靠近的四等分點;故      --------------------------8分

(Ⅲ),則,設平面的法向量為,

,即,令,

,即

中點時,,則

,

∴二面角的余弦值為.-------12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關系如圖1,B產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案