【題目】如圖,在直三棱柱中,點是線段上的動點.

1)線段上是否存在點,使得平面?若存在,請寫出值,并證明此時,平面;若不存在,請說明理由;

2)已知平面平面,求證:.

【答案】1)存在,,證明見解析;(2)證明見解析.

【解析】

1)在線段上存在點,當時,平面,連接,交于點,連接,則點的中點,證明即可;

2)過并交于點,由平面平面可得平面,從而得到,然后再證明,然后可得平面,可得.

1)在線段上存在點,當時,平面.

證明如下:連接,交于點,連接,則點的中點,

又當,即點的中點,由中位線定理得

平面,平面

平面.

2)證明:過并交于點,

又∵平面平面平面,平面平面

平面,又∵平面,∴.

在直三棱柱中,平面,平面,

,又∵平面,平面,,

平面.

又∵平面,∴.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,橢圓的四個頂點圍成的四邊形的面積為4.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)直線與橢圓交于, 兩點, 的中點在圓上,求為坐標原點)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠利用隨機數(shù)表對生產的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001,002,599,600從中抽取60個樣本,如下提供隨機數(shù)表的第4行到第6行:

32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42

84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04

32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45

若從表中第6行第6列開始向右依次讀取3個數(shù)據(jù),則得到的第6個樣本編號  

A. 522B. 324C. 535D. 578

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解戶籍、性別對生育二胎選擇傾向的影響,某地從育齡人群中隨機抽取了容量為的調查樣本,其中城鎮(zhèn)戶籍與農村戶籍各人;男性人,女性人,繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖(如圖所示),其中陰影部分表示傾向選擇生育二胎的對應比例,則下列敘述中錯誤的是( )

A. 是否傾向選擇生育二胎與戶籍有關

B. 是否傾向選擇生育二胎與性別有關

C. 傾向選擇生育二胎的人員中,男性人數(shù)與女性人數(shù)相同

D. 傾向選擇不生育二胎的人員中,農村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,左、右焦點分別是,橢圓上短軸的一個端點與兩個焦點構成的三角形的面積為;

(1)求橢圓的方程;

(2)過作垂直于軸的直線交橢圓兩點(點在第二象限),是橢圓上位于直線兩側的動點,若,求證:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=的定義域為R,則實數(shù)m取值范圍為

A.{m|–1≤m≤0}B.{m|–1<m<0}

C.{m|m≤0}D.{m|m<–1或m>0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,圓的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)求圓的普通方程和直線的直角坐標方程;

(2)若直線與圓交于兩點,是圓上不同于兩點的動點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩人各進行次射擊,甲每次擊中目標的概率為,乙每次擊中目標的概率,

(Ⅰ)記甲擊中目標的次數(shù)為,求的概率分布及數(shù)學期望;

(Ⅱ)求甲恰好比乙多擊中目標次的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)上是增函數(shù),則的取值范圍是(  )

A. B. C. D.

【答案】C

【解析】

若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)0,根據(jù)二次函數(shù)的單調性,我們可得到關于a的不等式,解不等式即可得到a的取值范圍.

若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),

則當x∈[2,+∞)時,

x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)

,f(2)=4+a>0

解得﹣4<a≤4

故選:C.

【點睛】

本題考查的知識點是復合函數(shù)的單調性,二次函數(shù)的性質,對數(shù)函數(shù)的單調區(qū)間,其中根據(jù)復合函數(shù)的單調性,構造關于a的不等式,是解答本題的關鍵.

型】單選題
束】
10

【題目】圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為( 。

A. B. C. D.

查看答案和解析>>

同步練習冊答案