如圖,焦距為2的橢圓D的兩個(gè)頂點(diǎn)分別為A和B,且數(shù)學(xué)公式數(shù)學(xué)公式共線.
(Ⅰ)求橢圓D的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)M(0,m)且斜率為數(shù)學(xué)公式的直線l與橢圓D有兩個(gè)不同的交點(diǎn)P和Q,若以PQ為直徑的圓經(jīng)過(guò)原點(diǎn)O,求實(shí)數(shù)m的值.

解:(Ⅰ)設(shè)橢圓E的標(biāo)準(zhǔn)方程為,
由已知得A(a,0)、B(0,b),
,
共線,
,又a2-b2=1(3分)
∴a2=2,b2=1,
∴橢圓E的標(biāo)準(zhǔn)方程為(5分)
(Ⅱ)設(shè)P(x1,y1),Q(x2,y2),
把直線方程代入橢圓方程,
消去y,得,
,(7分)
△=32m2-20(2m2-2)=-8m2+40>0,
∴m2<5(8分)
∵以PQ為直徑的圓經(jīng)過(guò)原點(diǎn)O,
,即x1x2+y1y2=0(9分)

由x1x2+y1y2=0得
∴m2=2<5(11分)
(12分)
分析:(Ⅰ)設(shè)橢圓E的標(biāo)準(zhǔn)方程為,由已知得A(a,0)、B(0,b),故,由共線,知,由此能求出橢圓E的標(biāo)準(zhǔn)方程.
(Ⅱ)設(shè)P(x1,y1),Q(x2,y2),把直線方程代入橢圓方程,得,,故,,△=32m2-20(2m2-2)=-8m2+40>0,故m2<5.由以PQ為直徑的圓經(jīng)過(guò)原點(diǎn)O知,由此能求出實(shí)數(shù)m的值.
點(diǎn)評(píng):本題考查橢圓標(biāo)準(zhǔn)方程的求法和求實(shí)數(shù)的值,綜合性強(qiáng),難度大,是高考的重點(diǎn),解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•河南模擬)如圖,焦距為2的橢圓E的兩個(gè)頂點(diǎn)分別為A和B,且
AB
n
=(
2
,-1)
共線.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線y=kx+m與橢圓E有兩個(gè)不同的交點(diǎn)P和Q,且原點(diǎn)O總在以PQ為直徑的圓的內(nèi)部,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,焦距為2的橢圓D的兩個(gè)頂點(diǎn)分別為A和B,且
AB
n
=(
2
,-1)
共線.
(Ⅰ)求橢圓D的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)M(0,m)且斜率為
2
的直線l與橢圓D有兩個(gè)不同的交點(diǎn)P和Q,若以PQ為直徑的圓經(jīng)過(guò)原點(diǎn)O,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省豫南九校高三第四次聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

如圖,焦距為2的橢圓E的兩個(gè)頂點(diǎn)分別為,且共線.

(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;

(Ⅱ)若直線與橢圓E有兩個(gè)不同的交

點(diǎn)PQ,且原點(diǎn)O總在以PQ為直徑的圓的內(nèi)部,求

實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年吉林省吉林市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題

(.(本小題滿分12分)

如圖,焦距為2的橢圓E的兩個(gè)頂點(diǎn)分別為,且共線.

(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;

(Ⅱ)若直線與橢圓E有兩個(gè)不同的交

點(diǎn)PQ,且原點(diǎn)O總在以PQ為直徑的圓的內(nèi)部,求

實(shí)數(shù)m的取值范圍.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年吉林省吉林市高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,焦距為2的橢圓E的兩個(gè)頂點(diǎn)分別為A和B,且共線.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線y=kx+m與橢圓E有兩個(gè)不同的交點(diǎn)P和Q,且原點(diǎn)O總在以PQ為直徑的圓的內(nèi)部,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案