【題目】已知AF平面ABCD,四邊形ABEF為矩形,四邊形ABCD為直角梯形, .

(1)求證: 平面;

(2)線段上是否存在一點(diǎn),使得 ?若存在,確定點(diǎn)的位置;若不存在,請說明理由.

【答案】1見解析;2見解析.

【解析】試題分析:(1ACBC,BEAC所以AC平面BCE.(2存在,點(diǎn)M為線段EF中點(diǎn)。

試題解析:

(1)過CCNAB,垂足為N,因?yàn)?/span>ADDC,所以四邊形ADCN為矩形.所以ANNB2.又因?yàn)?/span>AD2,AB4,所以AC,CN,BC, 所以AC2+BC2AB2,所以ACBC;

因?yàn)?/span>AF平面ABCD,AF//BE所以BE平面ABCD所以BEAC,

又因?yàn)?/span>BE平面BCE,BC平面BCE,BEBCB,

所以AC平面BCE

(2)存在,點(diǎn)M為線段EF中點(diǎn),證明如下:在矩形ABEF中,因?yàn)辄c(diǎn)MN為線段AB的中點(diǎn),所以四邊形BEMN為正方形,所以BMEN;因?yàn)?/span>AF平面ABCD,AD平面ABCD,所以AFAD.在直角梯形ABCD中,ADAB,又AFABA,所以AD平面ABEF,又CN//AD,所以CN平面ABEF,

BM平面ABEF所以CNBM

CNENN,所以BM平面ENC,

EC平面ENC,

所以BMCE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中, 的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,三個(gè)內(nèi)角滿足.

(1)若頂點(diǎn)的軌跡為,求曲線的方程;

(2)若點(diǎn)為曲線上的一點(diǎn),過點(diǎn)作曲線的切線交圓于不同的兩點(diǎn)(其中的右側(cè)),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與直線相切.

(1)求圓的方程;

(2)求直線截圓所得弦的長;

(3)過點(diǎn)作兩條直線與圓相切,切點(diǎn)分別為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的上下兩個(gè)焦點(diǎn)分別為,過點(diǎn)軸垂直的直線交橢圓兩點(diǎn), 的面積為,橢圓的離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知為坐標(biāo)原點(diǎn),直線軸交于點(diǎn),與橢圓交于兩個(gè)不同的點(diǎn),若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知AF平面ABCD,四邊形ABEF為矩形,四邊形ABCD為直角梯形, .

(1)求證: 平面

(2)線段上是否存在一點(diǎn),使得 ?若存在,確定點(diǎn)的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)當(dāng)時(shí),求函數(shù)的最大值;

2)令,其圖象上存在一點(diǎn),使此處切線的斜率,求實(shí)數(shù)的取值范圍;

(3)當(dāng), 時(shí),方程有唯一實(shí)數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的定義域;

(2)若函數(shù)的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線 所圍成封閉圖形面積為,曲線是以曲線與坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的橢圓, 離心率為. 平面上的動點(diǎn)為橢圓外一點(diǎn),且過點(diǎn)

引橢圓的兩條切線互相垂直.

1求曲線的方程;

(2)求動點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三人參加了一家公司的招聘面試,面試合格者可正式簽約,甲表示只要面試合格就簽約.乙、丙則約定:兩人面試都合格就一同簽約,否則兩人都不簽約.設(shè)每人面試合格的概率都是 ,且面試是否合格互不影響.求:
(1)至少有1人面試合格的概率;
(2)簽約人數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案