3.已知集合A的元素是由方程(a2-1)x2+2(a+1)x+1=0的實數(shù)解構(gòu)成.
(1)若A為空集,求a的取值范圍;
(2)若A是單元素集,求a的值;
(3)若A中至多只有一個元素,求a的取值范圍.

分析 (1)分類討論:a2-1=0時,解出之間驗證即可判斷出;a2-1≠0時,A為空集,可得△<0,解出即可得出.
(2)由(1)可知:a=1時,A={-$\frac{1}{4}$}滿足條件.a(chǎn)2-1≠0時,由△=0,解得a的范圍即可判斷出結(jié)論.
(3)由(1)(2)可知:a的取值范圍.

解答 解:(1)a2-1=0時,解得a=±1.a(chǎn)=1時,方程化為:4x+1=0,解得a=-$\frac{1}{4}$,A={-$\frac{1}{4}$}≠∅,舍去.
a=-1時,方程化為:0+0+1=0,解得x∈∅,A=∅,因此a=-1滿足條件.
a2-1≠0時,A為空集,∴△=4(a+1)2-4(a2-1)<0,解得:a<-1.∴a的取值范圍是(-∞,-1].
(2)由(1)可知:a=1時,A={-$\frac{1}{4}$}滿足條件.a(chǎn)2-1≠0時,由△=4(a+1)2-4(a2-1)=0,解得:a=-1,而此時A=∅,舍去.
綜上可得:a的取值范圍是{1}.
(3)由(1)(2)可知:a的取值范圍是(-∞,-1]∪{1}.

點評 本題考查了元素與集合之間的關(guān)系、不等式解法,考查了分類討論方法、推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知等差數(shù)列{an}中,a2=1,a3+a5=4,則該數(shù)列公差為( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的首項為2,前n項和為Sn,且$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$=$\frac{2}{4{S}_{n}-1}$(n∈N*).
(1)求a2的值;
(2)設(shè)bn=$\frac{{a}_{n}}{{a}_{n+1}-{a}_{n}}$,求數(shù)列{bn}的通項公式;
(3)若am,ap,ar(m,p,r∈N*,m<p<r)成等比數(shù)列,試比較p2與mr的大小,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)全集U={1,2,3,4,5},A={x|x2-5x+q=0},則∁UA={1,2,3,4,5},或{2,3,5},或{1,4,5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)數(shù)列{an}的前n項和為Sn,Sn=2an-2,(n≥1,n∈N),數(shù)列{bn}中,b1=1,b2=3,2bn+1=bn+bn+2,(n≥1,n∈N)
(1)求an和bn;
(2)令Tn=$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+…+$\frac{_{n}}{{a}_{n}}$,是否存在正整數(shù)M使得Tn<M對一切正整數(shù)n都成立?若存在,求出M的最小值;若不存在,請說明理由.
(3)令cn=$\frac{{a}_{n}-1}{{a}_{n+1}-1}$,證明:$\frac{n}{2}$-$\frac{1}{3}$<c1+c2+…+cn<$\frac{n}{2}$,(n≥1,n∈N)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知等差數(shù)列{an}中,a1>0,前n項和為Sn,S6=S10,問S1,S2,S3,…,Sn中哪一個值最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=x2-ax-alnx(a∈R),$g(x)=-{x^3}+\frac{5}{2}{x^2}+2x-6$
(1)若f(x)的一個極值點為1,求a的值;
(2)設(shè)g(x)在[1,4]上的最大值為b,當(dāng)x∈[1,+∞)時,f(x)≥b恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=$\frac{1}{2}{x^2}$-(a+1)x+1+lnx(a>0),若存在唯一一個整數(shù)x0使f(x0)<0成立,則a的范圍是( 。
A.(0,1)B.(0,1]C.(0,2+2ln2)D.($\frac{1}{2}$,$\frac{1}{2}$+$\frac{1}{2}$ln2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=-2sinx-cos2x.
(1)比較f($\frac{π}{4}$),f($\frac{π}{6}$)的大;
(2)求函數(shù)f(x)的最大值.

查看答案和解析>>

同步練習(xí)冊答案