12.已知a≠0,下列各不等式恒成立的是(  )
A.a+$\frac{1}{a}$>2B.a+$\frac{1}{a}$≥2C.a+$\frac{1}{a}$≤-2D.|a+$\frac{1}{a}$|≥2

分析 可取a<0,否定A,B;a>0,否定C;運用|a+$\frac{1}{a}$|=|a|+$\frac{1}{|a|}$,由基本不等式即可得到結論.

解答 解:取a<0,則選項A,B均不恒成立;
取a>0,則選項C不恒成立;
對于D,|a+$\frac{1}{a}$|=|a|+$\frac{1}{|a|}$≥2$\sqrt{|a|•\frac{1}{|a|}}$=2,
當且僅當|a|=1時,等號成立.
故選:D.

點評 本題考查不等式恒成立問題的解法,注意運用反例法和基本不等式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.sin75°=( 。
A.$\frac{{\sqrt{3}-\sqrt{2}}}{4}$B.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$C.$\frac{{\sqrt{3}+\sqrt{2}}}{4}$D.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.圓M:x2+y2-2y=24,直線l:x+y=11,l上一點A的橫坐標為a,過點A作圓M的兩條切線l1,l2,切點為B,C.
(Ⅰ)當a=0時,求直線l1,l2的方程;
(Ⅱ)是否存在點A,使得$\overrightarrow{AB}•\overrightarrow{AC}$=-2?若存在,求出點A的坐標,若不存在,請說明理由.
(Ⅲ)求證當點A在直線l運動時,直線BC過定點P0
(附加題)問:第(Ⅲ)問的逆命題是否成立?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=ex(x2-a),a∈R.
(Ⅰ)當a=1時,求曲線y=f(x)在點(0,f(0))處的切線方程;
(Ⅱ)若函數(shù)f(x)在(-3,0)上單調遞減,試求a的取值范圍;
(Ⅲ)若函數(shù)f(x)的最小值為-2e,試求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx-$\frac{k}{x}$有兩個零點x1、x2
(1)求k的取值范圍;
(2)求證:x1+x2>$\frac{2}{e}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{x+1,x<0}\end{array}\right.$,則f(1)等于(  )
A.0B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.某算法的程序框圖如圖所示,其中輸入的變量x在1,&2,&3,&…,&24這24個整數(shù)中等可能隨機產(chǎn)生.分別求出按程序框圖正確編程運行時輸出y的值為i的概率Pi(i=1,2,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知圓C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2+5cosφ}\\{y=\sqrt{3}+5sinφ}\end{array}\right.$(φ為參數(shù)),一坐標原點為極點,x軸的正半軸為極軸建立極坐標系,直線C2的極坐標方程為2ρcos(θ-$\frac{π}{3}$)=23
(1)把圓C1、C2的方程化為普通方程;
(2)求圓C1上的點到直線C2的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.為了調查城市PM2.5的值,按地域把48個城市分為甲、乙、丙三組,對應的城市數(shù)分別為10,18,20.若用分層抽樣的方法抽取16個城市,則乙組中應抽取的城市數(shù)為6.

查看答案和解析>>

同步練習冊答案