若對任意的x∈[1,3],不等式3x-2≥m恒成立,則m的取值范圍是( 。
A、m≤1B、m≤7
C、m≥1D、m≥7
考點(diǎn):函數(shù)恒成立問題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)不等式恒成立,轉(zhuǎn)化為求3x-2的最小值即可得到結(jié)論.
解答: 解:要使不等式3x-2≥m恒成立,
則等價(jià)為(3x-2)min≥m恒成立,
∵x∈[1,3],
∴3x∈[3,9],3x-2∈[1,7],
解得m≤1,
故選:A.
點(diǎn)評:本題主要考查不等式恒成立問題,將恒成立轉(zhuǎn)化為求函數(shù)的最值是解決本題的關(guān)鍵.比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某物體做直線運(yùn)動,其運(yùn)動規(guī)律是s=t2+
3
t
(t的單位是秒,s的單位是米),則它在4秒末的瞬時(shí)速度為(  )
A、
123
16
米/秒
B、
125
16
米/秒
C、8米/秒
D、
67
4
米/秒

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的是( 。
A、若平面M外的兩條直線在平面M內(nèi)的射影為一條直線及此直線外的一個(gè)點(diǎn),則這兩條直線互為異面直線
B、若平面M外的兩條直線在平面M內(nèi)的射影為兩條平行直線,則這兩條直線相交
C、若平面M外的兩條直線在平面M內(nèi)的射影為兩條平行直線,則這兩條直線平行
D、若平面M外的兩條直線在平面M內(nèi)的射影為兩條互相垂直的直線,則這兩條直線垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P“x≠y,則|x|≠|(zhì)y|”,以下關(guān)于命題P的說法正確的個(gè)數(shù)是( 。
①命題P是真命題              
②命題P的逆命題是真命題
③命題P的否命題是真命題      
④命題P的逆否命題是真命題.
A、0B、1C、2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下敘述正確的是( 。
A、兩個(gè)相互垂直的平面,在其中一個(gè)平面內(nèi)任取一點(diǎn),過該點(diǎn)作它們交線的垂線,那么該直線一定垂直于另外一個(gè)平面
B、如果一個(gè)平面內(nèi)有兩條直線和另外一個(gè)平面平行,那么這兩個(gè)平面一定平行
C、垂直于同一平面的兩個(gè)平面平行
D、過空間中任一點(diǎn)有且僅有一條直線和已知平面垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
x
2
3
(x∈Z)
f([x])  (x∉Z)
,([x]表示不大于x的最大整數(shù),如[1.1]=1),則f(8.8)=(  )
A、8B、4C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于以下說法:
①命題“?x>0,使x2+x+1<0”的否定是“?x≤0,x2+x+1≥0”;
②動點(diǎn)P到點(diǎn)M(-2,0)及點(diǎn)N(2,0)的距離之差為定值1,則點(diǎn)P的軌跡是雙曲線;
③三棱錐O-ABC中,若點(diǎn)P滿足
OP
=x
OA
+y
OB
+z
OC
,且x+y+z=1,則點(diǎn)P在平面ABC內(nèi).
其中正確的個(gè)數(shù)是(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別是銳角三角形ABC的三個(gè)內(nèi)角A,B,C的對邊,若2asinB=
3
b,則∠A=( 。
A、30°B、60°
C、45°D、75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對應(yīng)的邊分別為a、b、c,已知bcosC+ccosB=2b,則
a
b
=(  )
A、2
B、
1
2
C、
2
D、1

查看答案和解析>>

同步練習(xí)冊答案