【題目】為了了解疫情期間哈一中高三學(xué)生的心理需求,更好的開展高考前的心理健康教育工作,心理老師設(shè)計(jì)了兩個(gè)問題,第一個(gè)問題是你出生的月份是奇數(shù)嗎?;第二個(gè)問題是你是否需要心理疏導(dǎo)?”.讓被調(diào)查者在保密的情況下擲一個(gè)均勻的骰子,其他人不知道擲骰子的結(jié)果,要求:當(dāng)出現(xiàn)1點(diǎn)或2點(diǎn)時(shí),回答第一個(gè)問題;否則回答第二個(gè)問題,由于其他人不知道他回答的是哪一個(gè)問題,因此,當(dāng)他回答時(shí),你也無法知道他是否有心理問題,這種調(diào)查既保護(hù)了他的隱私,也能反映真實(shí)情況,可以從調(diào)查結(jié)果中得到需要的估計(jì),若調(diào)查的900名學(xué)生中有156人回答,由此可估計(jì)我校高三需要心理疏導(dǎo)的學(xué)生所占的比例約為______

【答案】

【解析】

先確定骰子出現(xiàn)1點(diǎn)或2點(diǎn)時(shí)的概率,即回答第一個(gè)問題的概率,求出回答第一個(gè)問題的人數(shù),再確定其中回答的概率,再求出其中回答的人數(shù),則可求回答第二個(gè)問題的人數(shù)以及其中回答的人數(shù),則比例可求;

解:出現(xiàn)1點(diǎn)或2點(diǎn)的概率為,即回答第一個(gè)問題的人數(shù)有,

因?yàn)槌錾脑路菔瞧鏀?shù)或偶數(shù)的可能性相同,所以其中出生的月份是奇數(shù)的概率為,其中出生的月份是奇數(shù)的人數(shù)有,

即第一個(gè)問題回答的有150人,所以第二個(gè)問題回答的有6人,回答第二個(gè)問題的總共有600人,

所以可估計(jì)我校高三需要心理疏導(dǎo)的學(xué)生所占的比例約為.

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知邊長為的等邊三角形的一個(gè)頂點(diǎn)位于原點(diǎn),另外兩個(gè)頂點(diǎn)在拋物線)上.

1)求拋物線的方程;

2)直線交拋物線兩點(diǎn),交拋物線的準(zhǔn)線于點(diǎn),交軸于點(diǎn),若.證明:直線過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,,,、分別為的中點(diǎn),且.

1)求證:平面;

2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若,求的單調(diào)區(qū)間;

2)若處取得最大值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,底面△是邊長為2的正三角形,底面,點(diǎn)分別為的中點(diǎn).

1)求證:平面平面;

2)在線段上是否存在點(diǎn),使得三棱錐體積為?若存在,確定點(diǎn)的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點(diǎn),橢圓的右頂點(diǎn)為,點(diǎn)的坐標(biāo)為

1)求橢圓的方程;

2)已知縱坐標(biāo)不同的兩點(diǎn),為橢圓上的兩個(gè)點(diǎn),且,,三點(diǎn)共線,線段的中點(diǎn)為,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,則直線的參數(shù)方程為(為參數(shù)).若直線與圓相交于兩點(diǎn),且.

1)求圓的直角坐標(biāo)方程,并求出圓心坐標(biāo)和半徑;

2)求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直角坐標(biāo)系中,曲線由中心在原點(diǎn),焦點(diǎn)在軸上的半橢圓和以原點(diǎn)為圓心,半徑為2的半圓構(gòu)成,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

1)寫出曲線的極坐標(biāo)方程;

2)已知射線與曲線交于點(diǎn),點(diǎn)為曲線上的動點(diǎn),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案