4.已知$tan(α+4π)=-\frac{4}{3}$,且$α∈(\frac{π}{2},π)$,求sinα,cosα的值.

分析 利用誘導(dǎo)公式化簡可得tanα的值,根據(jù)同角三角函數(shù)關(guān)系式可得sinα,cosα的值.

解答 解:由tan(α+4π)=tan α=$\frac{sinα}{cosα}$=-$\frac{4}{3}$,
得sin α=-$\frac{4}{3}$cos α.①
又sin2 α+cos2α=1,②
由①②得$\frac{16}{9}$cos2α+cos2α=1,即cos2α=$\frac{9}{25}$.
又$α∈(\frac{π}{2},π)$,
即α是第二象限角,
∴cos α=-$\frac{3}{5}$,sin α=$\frac{4}{5}$.

點(diǎn)評(píng) 本題考查了誘導(dǎo)公式的化簡能力及同角三角函數(shù)基本關(guān)系式,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}滿足:a1=1,an+1=2an,數(shù)列{bn}滿足:b1=3,b4=11,且{an+bn}為等差數(shù)列.
(I) 求數(shù)列{an}和{bn}的通項(xiàng)公式;
(II) 求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列三句話按三段論的模式排列順序正確的是( 。
①2018能被2整除; 
②一切偶數(shù)都能被2整除; 
③2018是偶數(shù).
A.①②③B.②①③C.②③①D.③②①

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.現(xiàn)有四分之一圓形的紙板(如圖),∠AOB=90°,圓半徑為1,要裁剪成四邊形OAPB,且滿足AP∥OB,∠OAB=30°,∠POA=θ,記此四邊形OAPB的面積為f(θ),求f(θ)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)=\overrightarrow a•\overrightarrow b$,其中$\overrightarrow a=(2cosx,\sqrt{3}sin2x)$,$\overrightarrow b=(cosx,1)$,x∈R.
(1)求函數(shù)y=f(x)的周期和單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,f(A)=2,$a=\sqrt{7}$,且sinB=2sinC,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合A={x|2x>1},B={x|x2-3x-4>0},則∁R(A∪B)=( 。
A.{x|x≤0或x>4}B.{x|x<-1或x>4}C.RD.{x|-1≤x≤0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某園林基地培育了一種新觀賞植物,經(jīng)過了一年的生長發(fā)育,技術(shù)人員從中抽取了部分植株的高度(單位:厘米)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),[80,90),[90,100]分組做出頻率分布直方圖,并作出樣本高度的莖葉圖(圖中僅列出了高度在[50,60),[90,100]的數(shù)據(jù)).

(1)求樣本容量n和頻率分布直方圖中的x,y
(2)在選取的樣本中,從高度在80厘米以上(含80厘米)的植株中隨機(jī)抽取3株,設(shè)隨機(jī)變量X表示所抽取的3株高度在[80,90)內(nèi)的株數(shù),求隨機(jī)變量X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.方程($\frac{1}{3}$)x-x=0的解有( 。
A.0個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某射擊手射擊一次命中的概率為0.8,連續(xù)兩次均射中的概率是0.5,已知某次射中,則隨后一次射中的概率是( 。
A.$\frac{5}{8}$B.$\frac{3}{8}$C.$\frac{4}{5}$D.$\frac{2}{5}$

查看答案和解析>>

同步練習(xí)冊答案