已知拋物線C:y2=4x及直線l:x-y+4=0;戶是拋物線C上的動點,記尸到拋物線C準線的距離為d1,P到直線的距離為d2,則dl+d2的最小值為
 
考點:拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:點P到準線的距離等于點P到焦點F的距離,過焦點F作直線x-y+4=0的垂線,此時d1+d2最小,根據(jù)拋物線方程求得F,進而利用點到直線的距離公式求得d1+d2的最小值.
解答: 解:點P到準線的距離等于點P到焦點F的距離,過焦點F作直線x-y+4=0的垂線,此時d1+d2最小,
∵F(1,0),則d1+d2=
|1-0+4|
2
=
5
2
2
,
故答案為:
5
2
2
點評:本題主要考查了拋物線的簡單性質(zhì),兩點距離公式的應(yīng)用,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x<a},B={x|x<3},則“a<3”是“A⊆B”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a、b是實數(shù),則“a>b>0”是“a2>b2”的( 。
A、充分必要條件
B、必要而不充分條件
C、充分而不必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足:zi=2+i(i是虛數(shù)單位),則z的虛部為( 。
A、2iB、-2iC、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
3-2i
1-i
的共軛復(fù)數(shù)
.
z
=(  )
A、
5
2
+
1
2
i
B、
5
2
-
1
2
i
C、
1
2
+
5
2
i
D、
1
2
-
5
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=2,AC=1,∠BAC=120°,O是△ABC的外心,若
AO
=x1
AB
+x2
AC
,則x1•x2的值為( 。
A、2
B、
13
6
C、
10
9
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
,且過點(
2
,1)過點C(-1,0)且斜率為k的直線l與橢圓相交于不同的兩點A、B.
(Ⅰ)求橢圓的方程;
(Ⅱ)若線段AB的中點的橫坐標為-
1
2
,求斜率k的值;
(Ⅲ)在x軸上是否存在點M,使
MA
MB
+
5
3k2+1
是與k無關(guān)的常數(shù)?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記直線x-3y-1=0的傾斜角為α,曲線y=lnx在(6,ln6)處切線的傾斜角為β,則tan(α+β)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n是方程x2+(2-k)x+k2+3k+5=0(k∈R)的兩個實根,求m2+n2的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案