【題目】已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的零點(diǎn).

(1)求的取值范圍;

(2)記兩個(gè)零點(diǎn)為,且,已知,若不等式恒成立,求的取值范圍.

【答案】1

2

【解析】

1)根據(jù)零點(diǎn)與方程的關(guān)系,分離參數(shù)后構(gòu)造函數(shù),并求得,結(jié)合導(dǎo)函數(shù)的符號(hào)判斷的單調(diào)性,從而求得最大值;由時(shí)的極限,即可確定函數(shù)與函數(shù)的圖象在上有兩個(gè)不同交點(diǎn)時(shí)的取值范圍;

2)根據(jù)零點(diǎn)定義,將代入可得,.再結(jié)合不等式代入化簡(jiǎn)并分離參數(shù);由,,作差也可分離參數(shù),將兩個(gè)式子合并化簡(jiǎn),令,再構(gòu)造函數(shù),再求得,對(duì)分類討論,由的單調(diào)性與極值,即可確定的取值范圍.

1)依題意,函數(shù)在定義域上有兩個(gè)不同的零點(diǎn),即方程)上有兩個(gè)不同的解,也即上有兩個(gè)不同的解.

,則

當(dāng)時(shí),,所以上單調(diào)逆增,

當(dāng)時(shí),,所以上單調(diào)遞減,

所以

時(shí),

當(dāng)時(shí),,且

若函數(shù)與函數(shù)的圖象在上有兩個(gè)不同的交點(diǎn),

2)因?yàn)?/span>為方程的兩根,

所以,

不等式,變形可得,

代入可得

因?yàn)?/span>,,所以原不等式等價(jià)于

又由,,作差得,所以

所以原不等式等價(jià)于恒成立.

,則,不等式等價(jià)于上恒成立.

,則

①當(dāng)時(shí),,所以上單調(diào)遞,因此,滿足條件;

②當(dāng)時(shí),上單調(diào)遞增,在上單調(diào)遞減,又,所以上不能恒小于零.

綜上,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)討論極值點(diǎn)的個(gè)數(shù);

(Ⅱ)若的一個(gè)極值點(diǎn),且,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年,中華人民共和國(guó)成立70周年,為了慶祝建國(guó)70周年,某中學(xué)在全校進(jìn)行了一次愛(ài)國(guó)主義知識(shí)競(jìng)賽,共1000名學(xué)生參加,答對(duì)題數(shù)(共60題)分布如下表所示:

組別

頻數(shù)

10

185

265

400

115

25

答對(duì)題數(shù)近似服從正態(tài)分布為這1000人答對(duì)題數(shù)的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表).

1)估計(jì)答對(duì)題數(shù)在內(nèi)的人數(shù)(精確到整數(shù)位).

2)學(xué)校為此次參加競(jìng)賽的學(xué)生制定如下獎(jiǎng)勵(lì)方案:每名同學(xué)可以獲得2次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)所得獎(jiǎng)品的價(jià)值與對(duì)應(yīng)的概率如下表所示.

獲得獎(jiǎng)品的價(jià)值(單位:元)

0

10

20

概率

(單位:元)表示學(xué)生甲參與抽獎(jiǎng)所得獎(jiǎng)品的價(jià)值,求的分布列及數(shù)學(xué)期望.

附:若,則,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)若內(nèi)單調(diào)遞減,求實(shí)數(shù)的取值范圍;

(Ⅱ)若函數(shù)有兩個(gè)極值點(diǎn)分別為,,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】九章算術(shù)給出求羨除體積的“術(shù)”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側(cè)棱的長(zhǎng),“深”指一條側(cè)棱到另兩條側(cè)棱所在平面的距離,“袤”指這兩條側(cè)棱所在平行線之間的距離,用現(xiàn)代語(yǔ)言描述:在羨除中,,,,兩條平行線間的距離為h,直線到平面的距離為,則該羨除的體積為已知某羨除的三視圖如圖所示,則該羨除的體積為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某便利店計(jì)劃每天購(gòu)進(jìn)某品牌鮮奶若干件,便利店每銷售一瓶鮮奶可獲利元;若供大于求,剩余鮮奶全部退回,但每瓶鮮奶虧損元;若供不應(yīng)求,則便利店可從外調(diào)劑,此時(shí)每瓶調(diào)劑品可獲利.

(1)若便利店一天購(gòu)進(jìn)鮮奶瓶,求當(dāng)天的利潤(rùn)單位:元關(guān)于當(dāng)天鮮奶需求量單位:瓶,的函數(shù)解析式;

(2)便利店記錄了天該鮮奶的日需求量單位:瓶,整理得下表:

日需求量

頻數(shù)

若便利店一天購(gòu)進(jìn)瓶該鮮奶,以天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天利潤(rùn)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求直線和圓的普通方程;

(2)已知直線上一點(diǎn),若直線與圓交于不同兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的離心率為,且經(jīng)過(guò)點(diǎn).

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作直線與橢圓交于不同的兩點(diǎn),,試問(wèn)在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對(duì)稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書(shū)中有一個(gè)“引葭赴岸”問(wèn)題:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,適與岸齊.問(wèn)水深、葭長(zhǎng)各幾何?”其意思為“今有水池1丈見(jiàn)方(即尺),蘆葦生長(zhǎng)在水的中央,長(zhǎng)出水面的部分為1.將蘆葦向池岸牽引,恰巧與水岸齊接(如圖所示).試問(wèn)水深、蘆葦?shù)拈L(zhǎng)度各是多少?假設(shè),現(xiàn)有下述四個(gè)結(jié)論:

①水深為12尺;②蘆葦長(zhǎng)為15尺;③;④.

其中所有正確結(jié)論的編號(hào)是(

A.①③B.①③④C.①④D.②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案