已知圓C:(x-3)2+(y-4)2=4,直線l1過定點A (1,0).
(1)若l1與圓C相切,求l1的方程;
(2)若l1的傾斜角為
π4
,l1與圓C相交于P,Q兩點,求線段PQ的中點M的坐標;
(3)若l1與圓C相交于P,Q兩點,求三角形CPQ的面積的最大值,并求此時l1的直線方程.
分析:(1)通過直線l1的斜率存在與不存在兩種情況,利用直線的方程與圓C相切,圓心到直線的距離等于半徑,判斷直線是否存在,求出k,即可求l1的方程;
(2)l1的傾斜角為
π
4
,直接求出l1的方程,利用直線l1與圓C相交于P,Q兩點,求線段PQ的中點M的坐標,直接轉(zhuǎn)化為過圓心與直線l1垂直的中垂線方程,解兩條直線方程的交點即可;
(3)l1與圓C相交于P,Q兩點,直線與圓相交,斜率必定存在,且不為0,設(shè)直線方程為kx-y-k=0,求出圓心到直線的距離,弦長,得到三角形CPQ的面積的表達式,利用二次函數(shù)求出面積的最大值時的距離,然后求出直線的斜率,得到l1的直線方程.
解答:解:(1)解:①若直線l1的斜率不存在,則直線x=1,圓的圓心坐標(3,4),半徑為2,符合題意.
②若直線l1斜率存在,設(shè)直線l1為y=k(x-1),即kx-y-k=0.
由題意知,圓心(3,4)到已知直線l1的距離等于半徑2,即:
|3k-4-k|
k2+1
=2
,
解之得  k=
3
4
.所求直線方程是:x=1,或3x-4y-3=0.
(2)直線l1方程為y=x-1.∵PQ⊥CM,∴CM方程為y-4=-(x-3),即x+y-7=0.
y=x-1
x+y-7=0
x=4
y=3.
∴M點坐標(4,3).
(3)直線與圓相交,斜率必定存在,且不為0,設(shè)直線方程為kx-y-k=0,
則圓心到直l1的距離d=
|2k-4|
1+k2

又∵三角形CPQ面積
S=
1
2
d×2
4-d2
=d
4-d2
=
4d2-d4
=
-(d2-2)2+4
,

∴當d=
2
時,S取得最大值2.∴d=
|2k-4|
1+k2
=
2
,k=1或k=7

∴直線方程為y=x-1,或y=7x-7.
點評:本題考查直線與圓的位置關(guān)系,直線與圓相切,相交,直線的交點,弦的中點,三角形的面積的最值直線方程等有關(guān)知識,考查計算能力,轉(zhuǎn)化思想,注意直線的斜率不存在的情況,容易疏忽,是易錯點.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-3)2+(y-4)2=4,直線l1過定點A(1,0).
(Ⅰ)若l1與圓相切,求l1的方程;
(Ⅱ)若l1與圓相交于P,Q兩點,線段PQ的中點為M,又l1與l2:x+2y+2=0的交點為N,求證:AM•AN為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知圓C:(x-3)2+(y-4)2=4,
(Ⅰ)若直線l1過定點A(1,0),且與圓C相切,求l1的方程;
(Ⅱ)若圓D的半徑為3,圓心在直線l2:x+y-2=0上,且與圓C外切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-3)2+(y-4)2=4,
(1)直線l1過定點A (1,0).若l1與圓C相切,求l1的方程;
(2)直線l2過B(2,3)與圓C相交于P,Q兩點,求線段PQ的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-3)2+(y-4)2=4,
(Ⅰ)若a=y-x,求a的最大值和最小值;
(Ⅱ)若圓D的半徑為3,圓心在直線L:x+y-2=0上,且與圓C外切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x+3)2+(y-4)2=4.
(1)若直線l1過點A(-1,0),且與圓C相切,求直線l1的方程;
(2)若圓D的半徑為4,圓心D在直線l2:2x+y-2=0上,且與圓C內(nèi)切,求圓D的方程.

查看答案和解析>>

同步練習冊答案