如圖,已知三棱錐A―BPC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且△PMB為正三角形。

   (1)求證:DM//平面APC;

   (2)求 證:平面ABC⊥平面APC;

   (3)若BC=4,AB=20,求三棱錐D―BCM的體積。    

解:(1)∵M(jìn)為AB中點(diǎn),D為PB中點(diǎn),

∴MD//AP,   又∴MD平面ABC

∴DM//平面APC。

(2)∵△PMB為正三角形,且D為PB中點(diǎn)。

∴MD⊥PB。

又由(1)∴知MD//AP,  ∴AP⊥PB。

又已知AP⊥PC   ∴AP⊥平面PBC,

∴AP⊥BC,   又∵AC⊥BC。

∴BC⊥平面APC,   ∴平面ABC⊥平面PAC,

(3)∵AB=20

∴MB=10    ∴PB=10

又BC=4,

又MD

∴VD-BCM=VM-BCD=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且△PMB為正三角形.
(1)求證:DM∥平面APC;
(2)求證:平面ABC⊥平面APC;
(3)若BC=4,AB=20,求三棱錐D-BCM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱錐A-PBC中,AP⊥PC,AC⊥BC,M為AB中點(diǎn),D為PB中點(diǎn),且AB=2MP.
(1)求證:DM∥平面APC;
(2)求證:平面ABC⊥平面APC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長(zhǎng)都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
(1)將側(cè)面沿AB展開(kāi)在同一個(gè)平面上,如圖②所示,求證:∠BAB′=90°.
(2)求BM+MN+NB的最小值.
(3)當(dāng)BM+MN+NB取得最小值時(shí),證明:CD∥平面BMN

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱錐A-BCD的棱長(zhǎng)都相等,E,F(xiàn)分別是棱AB,CD的中點(diǎn),則EF與BC所成的角是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB的中點(diǎn),D為PB的中點(diǎn),且△PMB為正三角形.
(1)求證:DM∥平面APC;
(2)若BC=4,AB=20,求三棱錐D-BCM的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案