16.已知圓C的圓心在直線x-y+1=0與x軸的交點(diǎn),且圓C與圓(x-2)2+(y-3)2=8相外切,若過點(diǎn)P(-1,1)的直線l與圓C交于A、B兩點(diǎn),當(dāng)∠ACB最小時(shí),直線l的方程為y=1.

分析 根據(jù)題意先求圓心,利用與另外一個(gè)圓相外切,求出半徑,直線與圓相交建立關(guān)系.動(dòng)點(diǎn)考查,求方程.

解答 解:由題意:圓C的圓心在直線x-y+1=0與x軸的交點(diǎn),則圓心為(-1,0),設(shè)半徑為r.
圓C與圓(x-2)2+(y-3)2=8相外切,圓心距等于兩圓半徑之和,∴r+$2\sqrt{2}$=$3\sqrt{2}$
解得:r=$\sqrt{2}$
所以圓C:(x+1)2+y2=2
P(-1,1)在圓C內(nèi).
由圓的弦長(zhǎng)性質(zhì)知道,弦長(zhǎng)最短,對(duì)應(yīng)的圓心角最小,當(dāng)∠ACB最小時(shí),弦長(zhǎng)最短,過某點(diǎn)的最短弦長(zhǎng)是與過該點(diǎn)的直徑垂直.
∵過P(-1,1)的直徑方程為x=-1,∴過P(-1,1)的最短弦方程為y=1,此時(shí)∠ACB最小.

點(diǎn)評(píng) 本題考查了圓與直線的關(guān)系的運(yùn)用,過某點(diǎn)的弦長(zhǎng)的性質(zhì).根據(jù)直線和圓相切的等價(jià)條件是解決本題的關(guān)鍵.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.等差數(shù)列{an}的前n項(xiàng)之和為Sn,已知a1>0,S12>0,S13<0,則S1,S2,S3,S4,…,S11,S12中最大的是( 。
A.S12B.S7C.S6D.S1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.以下四個(gè)命題中:
①在回歸分析中,可用相關(guān)指數(shù)R2的值判斷模型的擬合效果,R2越大,模擬的擬合效果越好;
②兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),相關(guān)系數(shù)的絕對(duì)值越接近于1;
③對(duì)分類變量x與y的隨機(jī)變量k2的觀測(cè)值k來說,k越小,判斷“x與y無關(guān)系”的把握程度越大;
④對(duì)分類變量x與y的隨機(jī)變量k2的觀測(cè)值k來說,k越小,判斷“x與y有關(guān)系”的把握程度越大.
其中真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知復(fù)數(shù) z=$\frac{\sqrt{3}+i}{(1-\sqrt{3}i)^{2}}$,$\overline{z}$是z的共軛復(fù)數(shù),則|$\overline{z}$|=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.計(jì)算定積分:${∫}_{0}^{\frac{π}{2}}$(x+sinx)dx=$\frac{{π}^{2}}{8}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=sinα-cosα}\\{y=2sinαcosα}\end{array}}\right.(α為參數(shù))$,則它的普通方程為( 。
A.y=x2+1B.y=-x2+1C.$y=-{x^2}+1,x∈[{-\sqrt{2},\sqrt{2}}]$D.y=x2+1,x∈[-$\sqrt{2}$,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在銳角△ABC中,已知∠A,∠B,∠C成等差數(shù)列,設(shè)y=sinA-cos(A-C+2B),則y的取值范圍是(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.2016年04月13日“山東濟(jì)南非法經(jīng)營疫苗系列案件”披露后,引發(fā)社會(huì)高度關(guān)注,引起公眾、受種者和兒童家長(zhǎng)對(duì)涉案疫苗安全性和有效性的擔(dān)憂.為采取后續(xù)處置措施提供依據(jù),保障受種者的健康,盡快恢復(fù)公眾接種疫苗的信心,科學(xué)嚴(yán)謹(jǐn)?shù)胤治錾姘敢呙缃臃N給受種者帶來的安全性風(fēng)險(xiǎn)和是否有效,對(duì)某疫苗預(yù)防疾病的效果,進(jìn)行動(dòng)物實(shí)驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如表,現(xiàn)從所有試驗(yàn)動(dòng)物中任取一只,取到“注射疫苗”動(dòng)物的概率為$\frac{2}{5}$.
(1)求2×2列聯(lián)表中的數(shù)據(jù)x,y,A,B的值;
未發(fā)病發(fā)病合計(jì)
未注射疫苗20xA
注射疫苗30yB
合計(jì)5050100
(2)繪制發(fā)病率的條形統(tǒng)計(jì)圖,并判斷疫苗是否有效?
(3)能夠有多大把握認(rèn)為疫苗有效?
附:${{K}^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P( K2≤K00.050.010.0050.001
K03.8416.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.(文)二次函數(shù)y=x2+bx的圖象如圖,對(duì)稱軸為x=1.若關(guān)于x的二次方程x2+bx-t=0(為實(shí)數(shù))在-1<x<4的范圍內(nèi)有解,則t的取值范圍是( 。
A.-1≤t<3B.t≥-1C.3<t<8D.-1≤t<8

查看答案和解析>>

同步練習(xí)冊(cè)答案