已知直線l⊥平面α,直線m?平面β,給出下列命題
①α∥β=l⊥m;
②α⊥β⇒l∥m;
③l∥m⇒α⊥β;
④l⊥m⇒α∥β.
其中正確命題的序號是( )
A.①②③
B.②③④
C.①③
D.②④
【答案】分析:由兩平行平面中的一個和直線垂直,另一個也和平面垂直得直線l⊥平面β,再利用面面垂直的判定可得①為真命題;
當直線與平面都和同一平面垂直時,直線與平面可以平行,也可以在平面內(nèi),故②為假命題;
由兩平行線中的一條和平面垂直,另一條也和平面垂直得直線m⊥平面α,再利用面面垂直的判定可得③為真命題;
當直線與平面都和同一平面垂直時,直線與平面可以平行,也可以在平面內(nèi),如果直線m在平面α內(nèi),則有α和β相交于m,故④為假命題.
解答:解:l⊥平面α且α∥β可以得到直線l⊥平面β,又由直線m?平面β,所以有l(wèi)⊥m;即①為真命題;
因為直線l⊥平面α且α⊥β可得直線l平行與平面β或在平面β內(nèi),又由直線m?平面β,所以l與m,可以平行,相交,異面;故②為假命題;
因為直線l⊥平面α且l∥m可得直線m⊥平面α,又由直線m?平面β可得α⊥β;即③為真命題;
由直線l⊥平面α以及l(fā)⊥m可得直線m平行與平面α或在平面α內(nèi),又由直線m?平面β得α與β可以平行也可以相交,即④為假命題.
所以真命題為①③.
故選 C.
點評:本題是對空間中直線和平面以及直線和直線位置關系的綜合考查.重點考查課本上的公理,定理以及推論,所以一定要對課本知識掌握熟練,對公理,定理以及推論理解透徹,并會用.