分析 由圖形求出∠CAD的度數(shù),以及BC,BD及CD的長,利用余弦定理求出cosB的值,再利用同角三角函數(shù)間的基本關(guān)系求出sinB的值,由sinA,sinB及BC的長,利用正弦定理求出AC的長,由BC,AC及cosA的值,利用余弦定理求出AB的長,由AB-BD即可求出AD的長.
解答 解:如圖,易知∠CAD=25°+35°=60°,BC=31,BD=20,CD=21,
由余弦定理得:cosB=$\frac{B{C}^{2}+B{D}^{2}}{2SC•BD}$=$\frac{3{1}^{2}+2{0}^{2}-2{1}^{2}}{2×31×20}$=$\frac{23}{31}$,
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{12\sqrt{3}}{31}$,
又在△ABC中,由正弦定理得:AC=$\frac{BCsinB}{sinA}$=$\frac{32×\frac{12\sqrt{3}}{31}}{\frac{\sqrt{3}}{2}}$=24,
由余弦定理得BC2=AC2+AB2-2AC•ABcosA,即312=AB2+242-2×AB×24cos60°,
∴AB2-24AB-385=0,
解得:AB=35或AB=-11(舍去),
∴AD=AB-BD=35-20=15(km).
點(diǎn)評(píng) 此題考查了余弦定理,正弦定理,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握正弦、余弦定理的解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{9}{4}$ | B. | -$\frac{5}{2}$ | C. | $\frac{9}{4}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=|x|+1 | B. | y=$\frac{1}{x}$ | C. | y=-x2+1 | D. | y=-x|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,-1) | C. | $({-\frac{1}{16},0})$ | D. | $({\frac{1}{16},0})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{e}$ | B. | $-\sqrt{e}$ | C. | e2 | D. | $\frac{1}{e^2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com