(2013•棗莊一模)某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為30元,并且每件產(chǎn)品須向總公司繳納a元(a為常數(shù),2≤a≤5)的管理費(fèi),根據(jù)多年的統(tǒng)計(jì)經(jīng)驗(yàn),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為x元時(shí),產(chǎn)品一年的銷售量為
kex
(e為自然對(duì)數(shù)的底數(shù))萬(wàn)件,已知每件產(chǎn)品的售價(jià)為40元時(shí),該產(chǎn)品一年的銷售量為500萬(wàn)件.經(jīng)物價(jià)部門(mén)核定每件產(chǎn)品的售價(jià)x最低不低于35元,最高不超過(guò)41元.
(1)求分公司經(jīng)營(yíng)該產(chǎn)品一年的利潤(rùn)L(x)萬(wàn)元與每件產(chǎn)品的售價(jià)x元的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),該產(chǎn)品一年的利潤(rùn)L(x)最大,并求出L(x)的最大值.
參考公式:(cax+b)′=aeax+b(a、b為常數(shù))
分析:(1)由每件產(chǎn)品的售價(jià)為40元時(shí),該產(chǎn)品一年的銷售量為500萬(wàn)件,代入可得k值,進(jìn)而根據(jù)利潤(rùn)=單件利潤(rùn)×銷售量得到該產(chǎn)品一年的利潤(rùn)L(x)萬(wàn)元與每件產(chǎn)品的售價(jià)x元的函數(shù)關(guān)系式;
(2)由(1)中所得函數(shù)的解析式,求導(dǎo)后分析函數(shù)的單調(diào)性,進(jìn)而分析出該產(chǎn)品一年的利潤(rùn)L(x)的最大值.
解答:解:(1)由題意,該產(chǎn)品一年的銷售量為y=
k
ex

將x=40,y=500代入得k=500e40
故該產(chǎn)品一年的銷售量為y=500e40-x…2分
故L(x)=(x-30-a)y=500(x-30-a)e40-x(35≤x≤41)…4分
(2)由(1)得,L′(x)=500[e40-x-(x-30-a)e40-x]=500e40-x(31+a-x),(35≤x≤41)…5分
①當(dāng)2≤a≤4時(shí),L′(x)≤500e40-x(31+4-35)=0,當(dāng)且僅當(dāng)a=4,x=35時(shí)取等號(hào)
故L(x)在[35,41]上單調(diào)遞減
故L(x)的最大值為L(zhǎng)(35)=500(5-a)e5…8分
②當(dāng)4<a≤5時(shí),L′(x)>0?35≤x<31+a,
L′(x)<0?31+a<x≤41
故L(x)在[35,31+a]上單調(diào)遞增,在[31+a,41]上單調(diào)遞減
故L(x)的最大值為L(zhǎng)(31+a)=500e9-a…8分
綜上所述,當(dāng)2≤a≤4時(shí),每件產(chǎn)品的售價(jià)為35元時(shí),該產(chǎn)品一年的利潤(rùn)最大,最大利潤(rùn)為500(5-a)e5萬(wàn)元;當(dāng)4<a≤5時(shí),每件產(chǎn)品的售價(jià)為(31+a)元時(shí),該產(chǎn)品一年的利潤(rùn)最大,最大利潤(rùn)為500e9-a萬(wàn)元;
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)模型的選擇與應(yīng)用,其中求出函數(shù)的解析式是解答(1)的關(guān)鍵,利用導(dǎo)數(shù)法分析函數(shù)的單調(diào)性是解答(2)的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•棗莊一模)某課題組進(jìn)行城市空氣質(zhì)量調(diào)查,按地域把24個(gè)城市分成甲、乙、丙三組,對(duì)應(yīng)城市數(shù)分別為4、12、8.若用分層抽樣抽取6個(gè)城市,則甲組中應(yīng)抽取的城市數(shù)為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•棗莊一模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),⊙O:x2+y2=b2,點(diǎn)A,F(xiàn)分別是橢圓C的左頂點(diǎn)和左焦點(diǎn),點(diǎn)P是⊙O上的動(dòng)點(diǎn).
(1)若P(-1,
3
),PA是⊙O的切線,求橢圓C的方程;
(2)是否存在這樣的橢圓C,使得
PA
PF
是常數(shù)?如果存在,求C的離心率,如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•棗莊一模)已知函數(shù)f(x)=x2+1的定義域?yàn)閇a,b](a<b),值域?yàn)閇1,5],則在平面直角坐標(biāo)系內(nèi),點(diǎn)(a,b)的運(yùn)動(dòng)軌跡與兩坐標(biāo)軸圍成的圖形的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•棗莊一模)設(shè)z=x+y,其中x,y滿足
x+2y≥0
x-y≤0
0≤y≤k
,若z的最大值為6,則z的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•棗莊一模)下列命題的否定為假命題的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案