設(shè).
(1)當(dāng)時(shí),,求a的取值范圍;
(2)若對(duì)任意,恒成立,求實(shí)數(shù)a的最小值.
(1);(2).
【解析】
試題分析:本題主要考查絕對(duì)值不等式的解法、不等式的性質(zhì)等基礎(chǔ)知識(shí),考查學(xué)生分析問(wèn)題解決問(wèn)題的能力,考查學(xué)生的轉(zhuǎn)化能力和計(jì)算能力.第一問(wèn),利用絕對(duì)值不等式的解法,先解出的解,再利用是的子集,列不等式組,求解;第二問(wèn),先利用不等式的性質(zhì)求出的最小值,將恒成立的表達(dá)式轉(zhuǎn)化為,再解絕對(duì)值不等式,求出的取值范圍.
試題解析:(1),即.依題意,,
由此得的取值范圍是[0,2] .5分
(2).當(dāng)且僅當(dāng)時(shí)取等號(hào).
解不等式,得.
故a的最小值為. 10分
考點(diǎn):1.絕對(duì)值不等式的解法;2.集合的子集關(guān)系;3.不等式的性質(zhì);4.恒成立問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分14分)
設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)在上的最大值;
(2)記函數(shù),若函數(shù)有零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省高三下學(xué)期綜合考試驗(yàn)收5理科數(shù)學(xué) 題型:解答題
(本小題滿分14分)
設(shè)函數(shù)
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),求的單調(diào)區(qū)間;
(3)當(dāng)時(shí),對(duì)任意的正整數(shù),在區(qū)間上總有個(gè)數(shù)使得成立,試求正整數(shù)的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高一上學(xué)期期末考試數(shù)學(xué)試題 題型:解答題
(本小題滿分14分)
設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)減區(qū)間;
(2)當(dāng)時(shí),函數(shù)在上的值域是[2,3],求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(湖北卷)數(shù)學(xué)(理科) 題型:解答題
設(shè),
(1)當(dāng)時(shí),求曲線在處的切線方程
(2)如果對(duì)任意的,恒有成立,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年河北省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分12分)
設(shè)函數(shù)
(1)當(dāng)時(shí),求的最大值;
(2)令,(),其圖象上任意一點(diǎn)處切線的斜率≤恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com