【題目】在四個(gè)函數(shù)y=sin|x|,y=cos|x|,y= ,y=lg|sinx|中,以π為周期,在 上單調(diào)遞增的偶函數(shù)是(
A.y=sin|x|
B.y=cos|x|
C.y=
D.y=lg|sinx|

【答案】D
【解析】解:由于函數(shù)y=sin|x|不具有周期性,故排除A;
由于函數(shù)y=cos|x|在 上單調(diào)遞減,故排除B;
由于函數(shù)y= 上單調(diào)遞減,故排除C;
由于函數(shù)y=lg|sinx|的周期為π,且是在 上單調(diào)遞增的偶函數(shù),故滿足條件,
故選:D.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)奇偶性的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A. 選修4-1:幾何證明選講

如圖,已知為圓的一條弦,點(diǎn)為弧的中點(diǎn),過點(diǎn)任作兩條弦分別交于點(diǎn).

求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)a的值為多少時(shí),f(x)是偶函數(shù)?
(2)若對(duì)任意x∈[0,+∞),都有f(x)>0,求實(shí)數(shù)a的取值范圍.
(3)若f(x)在區(qū)間[0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) . 

(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;

(Ⅱ)當(dāng)時(shí),討論函數(shù)單調(diào)性;

(Ⅲ)是否存在實(shí)數(shù),對(duì)任意的, ,且,有恒成立?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】質(zhì)監(jiān)部門從某超市銷售的甲、乙兩種食用油中分別各隨機(jī)抽取100桶檢測(cè)某項(xiàng)質(zhì)量指標(biāo),由檢測(cè)結(jié)果得到如下的頻率分布直方圖:

(Ⅰ)寫出頻率分布直方圖(甲)中的值;記甲、乙兩種食用油100桶樣本的質(zhì)量指標(biāo)的方差分別為,,試比較,的大。ㄖ灰髮懗龃鸢福;

(Ⅱ)估計(jì)在甲、乙兩種食用油中隨機(jī)抽取1捅,恰有一桶的質(zhì)量指標(biāo)大于20;

(Ⅲ)由頻率分布直方圖可以認(rèn)為,乙種食用油的質(zhì)量指標(biāo)值服從正態(tài)分布.其中近似為樣本平均數(shù)近似為樣本方差,設(shè)表示從乙種食用油中隨機(jī)抽取10桶,其質(zhì)量指標(biāo)值位于(14.55,38.45)的桶數(shù),求的數(shù)學(xué)期望.

注:①同一組數(shù)據(jù)用該區(qū)問的中點(diǎn)值作代表,計(jì)算得

②若,則,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=2sin(2x+ ),g(x)=mcos(2x﹣ )﹣2m+3(m>0),若對(duì)任意x1∈[0, ],存在x2∈[0, ],使得g(x1)=f(x2)成立,則實(shí)數(shù)m的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖幾何體中,矩形所在平面與梯形所在平面垂直,且, , , 的中點(diǎn).

(1)證明: 平面;

(2)證明: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把下列各命題作為原命題,分別寫出它們的逆命題、否命題和逆否命題.

(1)αβ,則sin αsin β;

(2)若對(duì)角線相等,則梯形為等腰梯形;

(3)已知a,b,c,d都是實(shí)數(shù),若abcd,則acbd.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于維向量,若對(duì)任意均有,則稱向量. 對(duì)于兩個(gè)向量定義.

(1)若, 求的值;

(2)現(xiàn)有一個(gè)向量序列: 且滿足: ,求證:該序列中不存在向量.

(3) 現(xiàn)有一個(gè)向量序列: 且滿足: ,若存在正整數(shù)使得向量序列中的項(xiàng),求出所有的.

查看答案和解析>>

同步練習(xí)冊(cè)答案