1.已知函數(shù)f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$.
(1)求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)已知△ABC中角A,B,C所對(duì)的邊分別是a,b,c,其中b=2,若銳角A滿足f($\frac{A}{2}$-$\frac{π}{6}$)=3,且$\frac{π}{4}$≤B≤$\frac{π}{3}$,求邊c的取值范圍.

分析 (1)利用倍角公式、和差公式可化簡(jiǎn)f(x),再利用正弦函數(shù)的單調(diào)性即可得出.
(2)由$f(\frac{A}{2}-\frac{π}{6})=\sqrt{3}$且角A為銳角得:$A=\frac{π}{3}$.又由正弦定理$\frac{sinB}=\frac{c}{sinC}$及b=2,可得c.

解答 解:(1)∵$f(x)=2sinxcosx+2\sqrt{3}{cos^2}x-\sqrt{3}$,∴$f(x)=sin2x+\sqrt{3}cos2x=2sin(2x+\frac{π}{3})$(3分)∴$當(dāng)2kπ+\frac{π}{2}≤2x+\frac{π}{3}≤\frac{3π}{2}+2kπ,k∈Z時(shí),解得$$kπ+\frac{π}{12}≤x≤\frac{7π}{12}+kπ,k∈Z$(6分)
因此,函數(shù)f(x)的單調(diào)減區(qū)間為$[kπ+\frac{π}{12},\frac{7π}{12}+kπ](k∈Z)$(7分)
(2)由$f(\frac{A}{2}-\frac{π}{6})=\sqrt{3}$且角A為銳角得:$A=\frac{π}{3}$    (9分)
又由正弦定理$\frac{sinB}=\frac{c}{sinC}$及b=2,
∴$c=\frac{2sinC}{sinB}=\frac{2sin(A+B)}{sinB}=\frac{{sinB+\sqrt{3}cosB}}{sinB}=1+\frac{{\sqrt{3}}}{tanB}$(2分)
∵$\frac{π}{4}≤B≤\frac{π}{3}$,∴$2≤c≤1+\sqrt{3}$(14分)

點(diǎn)評(píng) 本題考查了倍角公式、和差公式、正弦函數(shù)的單調(diào)性、正弦定理、三角函數(shù)求值,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,已知△ABC中,D為邊BC上靠近B點(diǎn)的三等分點(diǎn),連接AD,E為線段AD的中點(diǎn),若$\overrightarrow{CE}=m\overrightarrow{AB}+n\overrightarrow{AC}$,則m+n=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,三棱錐P-ABC中,PA⊥平面ABC,∠ABC=90°,PA=AC=2,D是PA的中點(diǎn),E是CD的中點(diǎn),點(diǎn)F在PB上,$\overrightarrow{PF}=3\overrightarrow{FB}$.
(1)證明:EF∥平面ABC;
(2)若∠BAC=60°,求點(diǎn)P到平面BCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知偶函數(shù)y=f(x)對(duì)于任意的$x∈[0,\frac{π}{2})$滿足f'(x)cosx+f(x)sinx>0(其中f'(x)是函數(shù)f(x)的導(dǎo)函數(shù)),則下列不等式中成立的是(  )
A.$\sqrt{2}f(-\frac{π}{3})<f(\frac{π}{4})$B.$\sqrt{2}f(-\frac{π}{3})<f(-\frac{π}{4})$C.$f(0)>\sqrt{2}f(-\frac{π}{4})$D.$f(\frac{π}{6})<\sqrt{3}f(\frac{π}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.一個(gè)高為1的正三棱錐的底面正三角形的邊長(zhǎng)為6,則此三棱錐的側(cè)面積為18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.為了得到函數(shù)$y=sin(2x+\frac{π}{3})$的圖象,可以將函數(shù)$y=sin(2x+\frac{π}{6})$的圖象(  )
A.向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度B.向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度
C.向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度D.向右平移$\frac{π}{12}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{bn}是等比數(shù)列,b9是3和5等差中項(xiàng),則b1b17=( 。
A.25B.16C.9D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=mxln(x+1)+x+1,m∈R.
(Ⅰ)若直線l與曲線y=f(x)恒相切于同一定點(diǎn),求l的方程;
(Ⅱ)當(dāng)x≥0時(shí),f(x)≤ex,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x|+|x-$\frac{1}{2}$|,A為不等式f(x)<x+$\frac{1}{2}$的解集.
(1)求A;
(2)當(dāng)a∈A時(shí),試比較|log2(1-a)|與|log2(1+a)|的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案