若二項(xiàng)式(a
x
-
1
x
6的展開式中的常數(shù)項(xiàng)為-160,則
a
0
(3x2-1)dx=
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì),定積分
專題:計(jì)算題,二項(xiàng)式定理
分析:運(yùn)用二項(xiàng)式展開式的通項(xiàng)公式,化簡(jiǎn)整理,再令x的次數(shù)為0,求出a,再由定積分的運(yùn)算法則,即可求得.
解答: 解:二項(xiàng)式(a
x
-
1
x
6的展開式的通項(xiàng)公式為:
C
r
6
a6-r•(-1)r•x3-r,
令3-r=0,則r=3.常數(shù)項(xiàng)為-C63a3=-20a3=-160,
∴a3=8,a=2,
a
0
(3x2-1)dx=(x3-x)
|
2
0
=6.
故答案為:6.
點(diǎn)評(píng):本題主要以二項(xiàng)式定理為載體考查定積分的應(yīng)用,屬于基礎(chǔ)題之列.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=1和點(diǎn)A(2,0),若定點(diǎn)B(t,0)(t≠2)和常數(shù)λ滿足:對(duì)圓O上任意一點(diǎn)P,都有|PB|=λ|PA|,則
λ
t
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b∈R,集合M={1,a+b,a},N={0,
b
a
,b},若M=N,則b2014-a2013=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn)(
16
81
 -
1
4
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:y=x+1,l2:y=mx+2當(dāng)l1⊥l2時(shí),則m等于( 。
A、0B、-3C、-1D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x|x-a|+b.
(1)當(dāng)a=1,b=1時(shí),求所有使f(x)=x成立的x的值.
(2)若f(x)為奇函數(shù),求證:a2+b2=0;
(3)設(shè)常數(shù)b=-1,且對(duì)任意x∈[0,1],f(x)<0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋擲一個(gè)骰子,記A為事件“落地時(shí)向上的數(shù)為奇數(shù)”,B為事件“落地時(shí)向上的數(shù)是偶數(shù)”,C為事件“落地時(shí)向上的數(shù)是3的倍數(shù)”,下面是對(duì)立事件的是( 。
A、A與BB、A與C
C、B與CD、A、B與C

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算下列各式的值
(1)(
8
27
)-
1
3
-(π-1)0+
2
1
4

(2)log3
27
+lg
2
5
-lg4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知遞增的等比數(shù)列{an}滿足a2+a3+a4=28,且a3+2是a2,a4的等差中項(xiàng)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=an(1+log2an),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案