某幾何體的三視圖如圖所示,則該幾何體的體積是
 

考點(diǎn):由三視圖求面積、體積
專題:空間位置關(guān)系與距離
分析:由已知中的三視圖可知,該幾何體是一個(gè)以俯視圖為底面的四棱錐,求出棱錐的底面面積和高,代入棱錐體積公式,可得答案.
解答: 解:由已知中的三視圖可知,該幾何體是一個(gè)以俯視圖為底面的四棱錐,
棱錐的底面為:上下底分別為1和2,高為2的梯形,
故底面面積S=
1
2
×(2+1)×2=3,
棱錐的高h(yuǎn)=3,
故棱錐的體積V=
1
3
Sh
=
1
3
×3×2=2,
故答案為:2
點(diǎn)評:本題考查的知識點(diǎn)是由三視圖求體積,其中根據(jù)已知中的三視圖分析出幾何體的形狀是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

國家標(biāo)準(zhǔn)規(guī)定:輕型汽車的氮氧化物排放量不得超過80mg/km.根據(jù)這個(gè)標(biāo)準(zhǔn),檢測單位從某出租車公司運(yùn)營的A、B兩種型號的出租車中分別抽取6輛,對其氮氧化物的排放量進(jìn)行檢測,檢測結(jié)果記錄如下:(單位:mg/km)
A 85 80 85 60 90 80
B 70 85 95 x 75 65
由于表格被污損,數(shù)據(jù)x看不清,統(tǒng)計(jì)員只記得A、B兩種出租車的氮氧化物排放量的平均值相等.
(1)求表格中x的值;
(2)從被檢測的6輛B種型號的出租車中任取3輛,記事件A:至少有兩輛出租車氮氧化物排放量未超過80mg/km,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD、BCFE、CDGF都是邊長為1的正方形,M為棱AE上任意一點(diǎn).
(Ⅰ)若M為AE的中點(diǎn),求證:AE⊥面MBC;
(Ⅱ)若M不為AE的中點(diǎn),設(shè)二面角B-MC-A的大小為α,直線BE與平面BMC所成的角為β,求|
sin(β-
π
4
)
cosα
|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},{bn}滿足a1=2,2an=1+anan+1,bn=an-1,數(shù)列{bn}的前n項(xiàng)和為Sn,Tn=S2n-Sn
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求證:Tn+1>Tn;
(3)求證:當(dāng)n≥2時(shí),S2n
7n+11
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}通項(xiàng)公式an=nsin(
n+1
2
π)+1的前n項(xiàng)和Sn,則S2013=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)D是圖中邊長為2的正方形區(qū)域,E是函數(shù)y=x3的 圖象與x軸及x=±1圍成的陰影區(qū)域.向D中隨機(jī)投一點(diǎn),則該點(diǎn)落入E中的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果a<0,-1<b<0,則ab2,a,ab的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x>0,y>0,x+y=4,則μ=
1
x
+
1
y
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
x2
a2
+
y2
b2
=1(a>b>0),M,N是橢圓的左、右頂點(diǎn),P是橢圓上任意一點(diǎn),且直線PM、PN的斜率分別為k1,k2(k1,k2≠0),若|k1|+|k2|的最小值為1,則橢圓的離心率為
 

查看答案和解析>>

同步練習(xí)冊答案