8.若二次函數(shù)y=x2+2(a-1)x+b在區(qū)間(3,+∞)上為減函數(shù),那么( 。
A.a<-2B.a≥-2C.a>-2D.a≤-2

分析 確定函數(shù)的對稱軸,利用二次函數(shù)y=x2+2(a-1)x+b在區(qū)間(3,+∞)上為減函數(shù),建立不等式,即可得出結(jié)論.

解答 解:函數(shù)的對稱軸為:x=1-a
∵二次函數(shù)y=x2+2(a-1)x+b在區(qū)間(3,+∞)上為減函數(shù),
∴1-a≤3
∴a≥-2
故選:B.

點評 本題考查函數(shù)的單調(diào)性,解題的關(guān)鍵是確定二次函數(shù)的對稱軸,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,在三棱錐A-BCD中,E,F(xiàn),G,H分別是邊AB,BC,CD,DA的中點.若AC⊥BD,求證:四邊形EFGH是矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)命題p:?n∈N*,2n≤2n+1,則¬p是(  )
A.?n∈N*,2n≤2n+1B.?n∈N*,2n>2n+1C.?n∈N*,2n=2n+1D.?n∈N*,2n≥2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.用反證法證明“?x∈R,2x>0”,應(yīng)假設(shè)為( 。
A.?x0∈R,${2^{x_0}}$>0B.?x0∈R,${2^{x_0}}$<0C.?x∈R,2x≤0D.?x0∈R,${2^{x_0}}$≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.與角-547°的終邊相同的角是( 。
A.173°B.-173°C.187°D.-7°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知x∈(0,+∞),觀察下列式子:$x+\frac{1}{x}≥2$,$x+\frac{4}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{4}{x^2}≥3$,$x+\frac{27}{x^3}=\frac{x}{3}+\frac{x}{3}+\frac{x}{3}+\frac{27}{x^3}≥4$…,歸納得第四個式子為$x+\frac{256}{x^4}=\frac{x}{4}+\frac{x}{4}+\frac{x}{4}+\frac{x}{4}+\frac{256}{x^4}≥5$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}的相鄰兩項an,an+1是關(guān)于x的方程x2-2nx+A=0的兩根,且a1=1.
(1)求證:數(shù)列$\{{a_n}-\frac{1}{3}•{2^n}\}$是等比數(shù)列;
(2)若${b_n}={log_2}[3{a_n}+{(-1)^n}]$,證明:對一切正整數(shù)n,有$\frac{1}{{{b_1}({b_1}+2)}}+\frac{1}{{{b_2}({b_2}+2)}}+…+$$\frac{1}{{{b_n}({b_n}+2)}}<\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若集合A={x|x=2k-1,k∈Z},B={x|x=4l±1,l∈Z},則( 。
A.A?BB.B?AC.A=BD.A∪B=Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.計算cos80°cos20°+sin80°sin20°的值為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案