精英家教網 > 高中數學 > 題目詳情
(2010•福建模擬)已知函數f(x)=ax+lnx,x∈(l,e).
(Ⅰ)若函數f(x)的圖象在x=2處的切線的斜率為1,求實數a的值;
(Ⅱ)若f(x)有極值,求實數a的取值范圍和函數f(x)的值域;
(Ⅲ)在(Ⅱ)的條件下,函數g(x)=x3-x-2,證明:?x1∈(l,e),?x0∈(l,e),使得g(x0)=f(x1)成立.
分析:(Ⅰ)先求導數,再由函數f(x)的圖象在x=2處的切線的斜率為1,令f′(2)=a+
1
2
=1
求解.
(Ⅱ)f(x)有極值,則f′(x)=a+
1
x
=0
有解,由x∈(1,e)得到-
1
x
∈(-1,-
1
e
)
,再由a=-
1
x
求得a的范圍.求值域時,先求極值,再由a的范圍,確定端點值與極值的大小關系,從而確定值域.要注意討論.
(Ⅲ):證明?x1∈(l,e),?x0∈(l,e),有g(x0)=f(x1)成立,即證函數f(x)的值域是函數g(x)的值域的子集.所以分別求得兩個函數的值域,再盾集合的關系即可
解答:解:(Ⅰ)f′(x)=a+
1
x
=0
(1分)
∵函數f(x)的圖象在x=2處的切線的斜率為1,∴f′(2)=a+
1
2
=1
(2分)
a=
1
2
(3分)
(Ⅱ)由f′(x)=a+
1
x
=0
,可得a=-
1
x

∵x∈(1,e)
-
1
x
∈(-1,-
1
e
)

a∈(-1,-
1
e
)
(5分)
經檢驗a∈(-1,-
1
e
)
時,f(x)有極值.
∴實數a的取值范圍為(-1,-
1
e
)
.(6分)
列表

f(x)的極大值為f(-
1
a
)=-1+ln(-
1
a
)
(7分)
又∵f(1)=a,f(e)=ae+1
由a≥ae+1,解得a≤
1
1-e
又∵-1<
1
1-e
<-
1
e
(8分)
∴當-1<a≤
1
1-e
時,函數f(x)的值域為(ae+1,-1+ln(-
1
a
)]
(9分)
1
1-e
<a<-
1
e
時,函數f(x)的值域為(a,-1+ln(-
1
a
)]
.(10分)
(Ⅲ)證明:∵當x∈(1,e)時,g'(x)=3x2-1>0,
∴g(x)在(1,e)上為單調遞增函數(11分)
∵g(1)=-2,g(e)=e3-e-2∴g(x)在(1,e)的值域為(-2,e3-e-2)(12分)
∵e3-e-2>-1+ln(-
1
a
)
,-2<ae+1,-2<a
(ae+1,-1+ln(-
1
a
)]
⊆(-2,e3-e-2),(a,-1+ln(-
1
a
)]
⊆(-2,e3-e-2)
∴?x1∈(1,e),?x0∈(1,e),使得g(x0)=f(x1)成立.(14分)
點評:本題主要考查導數的幾何意義以及用導數求函數的極值、最值和值域等問題,有參數時一定要注意分類討論.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2010•福建模擬)考察等式:
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
=
C
r
n
(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同學用概率論方法證明等式(*)如下:
設一批產品共有n件,其中m件是次品,其余為正品.現從中隨機取出r件產品,
記事件Ak={取到的r件產品中恰有k件次品},則P(Ak)=
C
k
m
C
r-k
n-m
C
r
n
,k=0,1,2,…,r.
顯然A0,A1,…,Ar為互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
C
r
n
,
所以
C
0
m
C
r
n-m
+
C
1
m
C
r-1
n-m
+…+
C
r
m
C
0
n-m
=
C
r
n
,即等式(*)成立.
對此,有的同學認為上述證明是正確的,體現了偶然性與必然性的統一;但有的同學對上述證明方法的科學性與嚴謹性提出質疑.現有以下四個判斷:
①等式(*)成立  ②等式(*)不成立  ③證明正確  ④證明不正確
試寫出所有正確判斷的序號
①③
①③

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•福建模擬)已知函數f(x)=(ax2+bx+c)ex在x=1處取得極小值,其圖象過點A(0,1),且在點處切線的斜率為-1.
(Ⅰ)求f(x)的解析式;
(Ⅱ)設函數g(x)的定義域D,若存在區(qū)間[m,n]⊆D,使得g(x)在[m,n]上的值域也是[m,n],則稱區(qū)間[m,n]為函數g(x)的“保值區(qū)間”.
(。┳C明:當x>1時,函數f(x)不存在“保值區(qū)間”;
(ⅱ)函數f(x)是否存在“保值區(qū)間”?若存在,寫出一個“保值區(qū)間”(不必證明);若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•福建模擬)選修4-4:坐標系與參數方程
在直角坐標平面內,以坐標原點O為極點,沿x軸的正半軸為極軸建立極坐標系.曲線C的極坐標方程是ρ=4cosθ,直線l的參數方程是
x=-3+
3
2
t
y=
1
2
t
(t為參數),M、N分別為曲線C、直線l上的動點,求|MN|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•福建模擬)某運動項目設置了難度不同的甲、乙兩個系列,每個系列都有K和D兩個動作.比賽時每位運動員自選一個系列完成,兩個動作得分之和為該運動員的成績.假設每個運動員完成每個系列的兩個動作的得分是相互獨立的.根據賽前訓練的統計數據,某運動員完成甲系列和乙系列動作的情況如下表:
表1:甲系列
動作 K動作 D動作
得分 100 80 40 1-
概率
3
4
1
4
3
4
1
4
表2:乙系列
動作 K動作 D動作
得分 90 50 20 0
概率
9
10
1
10
9
10
1
10
現該運動員最后一個出場,之前其他運動員的最高得分為115分
(Ⅰ)若該運動員希望獲得該項目的第一名,應選擇哪個系列?說明理由,并求其獲得第一名的概率;
(Ⅱ)若該運動員選擇乙系列,求其成績ξ的分布列及其數學期望Eξ.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2010•福建模擬)今有甲、乙、丙、丁四人通過“拔河”進行“體力”較量.當甲、乙兩人為一方,丙、丁兩人為另一方時,雙方勢均力敵;當甲與丙對調以后,甲、丁一方輕而易舉地戰(zhàn)勝了乙、丙一方;而乙憑其一人之力便戰(zhàn)勝了甲、丙兩人的組合.那么,甲、乙、丙、丁四人的“體力”由強到弱的順序是( 。

查看答案和解析>>

同步練習冊答案