【題目】已知函數(shù)y=f(x),x∈R,對(duì)于任意的x,y∈R,f(x﹣y)=f(x)﹣f(y),當(dāng)x>0時(shí),f(x)>0.
(1)求證:f(0)=0,且f(x)是奇函數(shù);
(2)求證:y=f(x),x∈R是增函數(shù);
(3)設(shè)f(1)=2,求f(x)在x∈[﹣5,5]時(shí)的最大值與最小值.

【答案】
(1)證明:令x=y=0,則f(0﹣0)=f(0)﹣f(0),∴f(0)=0.

令x=0,則f(﹣y)=f(0)﹣f(y)=﹣f(y),∴函數(shù)f(x)是奇函數(shù)


(2)證明:設(shè)x1,x2∈R,x1<x2,則x2﹣x1>0,

∵當(dāng)x>0時(shí),f(x)>0.∴f(x2﹣x2)=f(x2)﹣f(x1)>0,∴f(x2)>f(x1),

∴y=f(x),x∈R是增函數(shù)


(3)解:由(2)可知:f(x)在x∈[﹣5,5]時(shí)是增函數(shù),

因此最大值與最小值分別為f(5),f(﹣5).

∵f(1)=2,∴f(2)=f(1)+f(2﹣1)=2f(1)=4,f(4)=2f(2)=8.

f(5)=f(1)+f(5﹣1)=2+8=10.

∴f(﹣5)=﹣f(5)=﹣10.

∴f(x)在x∈[﹣5,5]時(shí)的最大值與最小值分別為10,﹣10


【解析】(1)令x=y=0,解得f(0)=0.令x=0,可得f(﹣y)=﹣f(y),可得函數(shù)f(x)是奇函數(shù).(2)設(shè)x1 , x2∈R,x1<x2 , 則x2﹣x1>0,可得當(dāng)x>0時(shí),f(x)>0.f(x2﹣x2)=f(x2)﹣f(x1)>0即可證明.(3)由(2)可知:f(x)在x∈[﹣5,5]時(shí)是增函數(shù),因此最大值與最小值分別為f(5),f(﹣5).由f(1)=2,可得f(2)=f(1)+f(2﹣1)=2f(1),同理可得f(4)=2f(2).可得f(5)=f(1)+f(5﹣1),f(﹣5)=﹣f(5).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從兩名老師和四名學(xué)生中選出四人排成一排照相,其中老師必須入選且相鄰,共有排列方法(
A.36種
B.72種
C.90種
D.144種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列語句中,是命題的個(gè)數(shù)是(
①|(zhì)x+2|;②﹣5∈Z;③πR;④{0}∈N.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】?jī)绾瘮?shù)y=f(x)的圖象經(jīng)過點(diǎn)(2,8),且滿足f(x)=64的x的值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x2+2x﹣3,x∈[﹣2,1],函數(shù)f(x)的值域?yàn)?/span>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,是偶函數(shù)且在(0,+∞)上為增函數(shù)的是(
A.y=cosx
B.y=﹣x2+1
C.y=log2|x|
D.y=ex﹣ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“x>3”是“x2﹣5x+6>0”的(
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U={1,2,3,4,5,6,7,8},A={2,4,8},B={1,4,5,7},則(UA)∩B=(
A.{4}
B.{1,5,7}
C.{1,2,5,7,8}
D.{1,2,4,5,7,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}(n∈N*)是等差數(shù)列,Sn是其前n項(xiàng)的和,且S5<S6 , S6=S7>S8 , 則下列結(jié)論錯(cuò)誤的是(
A.d<0
B.a7=0
C.S9>S5
D.S6與S7均為Sn的最大值

查看答案和解析>>

同步練習(xí)冊(cè)答案