9.已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=2an-1,則|a1-18|+|a2-18|+…|a10-18|=961.

分析 由Sn=2an-1,可得n≥2時(shí),an=Sn-Sn-1=2an-1-(2an-1-1),化為:an=2an-1,n=1時(shí),a1=2a1-1,解得a1=1,可得an=2n-1;n≥6時(shí),an≥32;n≤5時(shí),an≤16.即可得出和.

解答 解:由Sn=2an-1,可得n≥2時(shí),an=Sn-Sn-1=2an-1-(2an-1-1),
化為:an=2an-1,
n=1時(shí),a1=2a1-1,解得a1=1.
∴an=2n-1
n≥6時(shí),an≥32;n≤5時(shí),an≤16.
則|a1-18|+|a2-18|+…|a10-18|=18-1+18-2+…+18-16+32-18+…+29-18
=29+28+…+25-24-…-2-1
=$\frac{{2}^{10}-1}{2-1}$-2×$\frac{{2}^{5}-1}{2-1}$
=210-1-62=961.
故答案為:961.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式與求和公式、分類討論方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,坐標(biāo)紙上的每個(gè)單元格的邊長(zhǎng)為1,由下往上的六個(gè)點(diǎn):1,2,3,4,5,6的橫,縱坐標(biāo)分別對(duì)應(yīng)數(shù)列{an}(n∈N*)的前12項(xiàng)(即橫坐標(biāo)為奇數(shù)項(xiàng),縱坐標(biāo)為偶數(shù)項(xiàng)),按如此規(guī)律下去,則a2013+a2014+a2015等于( 。
A.1005B.1006C.1007D.2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若P(2,-1)為圓x2+y2-2x-24=0的弦AB的中點(diǎn),則直線AB的方程是(  )
A.x-y-3=0B.2x+y-3=0C.x+y-1=0D.2x-y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知f(x)=$\frac{x}{e^x}$,定義f1(x)=f'(x),f2(x)=f1′(x),f3(x)=f2′(x),…fn+1(x)=fn′(x),經(jīng)計(jì)算f1(x)=$\frac{1-x}{e^x},{f_2}(x)=\frac{x-2}{e^x},{f_3}(x)=\frac{3-x}{e^x}$,…,則fn(x)=$\frac{(-1)^{n}(x-n)}{{e}^{x}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知數(shù)列{an}是各項(xiàng)均不為0的正項(xiàng)數(shù)列,Sn為前n項(xiàng)和,且滿足2$\sqrt{S_n}={a_n}$+1,n∈N*,若不等式$\sqrt{S_n}$λ≤2an+1+8(-1)n對(duì)任意的n∈N*恒成立,求實(shí)數(shù)λ的最大值為( 。
A.-21B.-15C.-9D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)y=f(x)(x∈R)上任一點(diǎn)(x0,f(x0))處的切線斜率k=(x0-2)(x0+1)2,則函數(shù)f(x)的極值點(diǎn)的個(gè)數(shù)( 。
A.0個(gè)B.1個(gè)C.兩個(gè)D.三個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.存在θ∈R,使得關(guān)于θ的不等式cos2θ>2mcosθ-4m+7成立,則實(shí)數(shù)m的取值范圍為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若(x+1)n=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…an(x-1)n,其中n∈N*且an-2=112,a0+a1+a2+a3+…an=38

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若實(shí)數(shù)x,y滿足x2+y2-2y=0,則$\frac{y-1}{x-2}$的取值范圍為( 。
A.$[{-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}}]$B.$[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$C.$[-\sqrt{3},\sqrt{3}]$D.$({-\sqrt{2},\sqrt{2}})$

查看答案和解析>>

同步練習(xí)冊(cè)答案