已知橢圓C1
x2
2
+y2=1
和圓C2x2+y2=1,左頂點和下頂點分別為A,B,且F是橢圓C1的右焦點.
(1)若點P是曲線C2上位于第二象限的一點,且△APF的面積為
1
2
+
2
4
,求證:AP⊥OP;
(2)點M和N分別是橢圓C1和圓C2上位于y軸右側(cè)的動點,且直線BN的斜率是直線BM斜率的2倍,求證:直線MN恒過定點.
分析:(1)設曲線C2上的點P(x0,y0),利用△APF的面積為
1
2
+
2
4
,可求P的坐標,計算
AP
OP
=0,即可證得結論;
(2)設直線BM、BN的方程為y=2kx-1,代入橢圓方程,求得M,N的坐標,計算直線MN的斜率,可得直線MN的方程,即可求得結論.
解答:證明:(1)設曲線C2上的點P(x0,y0),且x0<0,y0>0,由題意A(-
2
,0),F(xiàn)(1,0)
∵△APF的面積為
1
2
+
2
4
,∴
1
2
|AF|y0
=
1
2
(1+
2
)y0=
1
2
+
2
4

y0=
2
2
x0=-
2
2

AP
OP
=(
2
2
,
2
2
)
(-
2
2
2
2
)
=0
∴AP⊥OP;
(2)設直線BM的斜率為k,則直線BN的斜率為2k,又兩直線都過點B(0,-1)
∴直線BM的方程為y=kx-1,直線BN的方程為y=2kx-1
將y=kx-1代入橢圓方程,消元可得(1+2k2)x2-4kx=0,∴xM=
4k
2k2+1
,∴yM=
2k2-1
2k2+1

∴M(
4k
2k2+1
2k2-1
2k2+1

同理N(
4k
4k2+1
,
4k2-1
4k2+1

∴直線MN的斜率為kMN=
4k2-1
4k2+1
-
2k2-1
2k2+1
4k
4k2+1
-
4k
2k2+1
=-
1
2k

∴直線MN的方程為y-
2k2-1
2k2+1
=-
1
2k
(x-
4k
2k2+1

整理得y=-
1
2k
x+1
∴直線MN恒過定點(0,1)
點評:本題考查橢圓與圓的標準方程,考查直線與橢圓的位置關系,考查直線恒過定點,確定點的坐標是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線C1:y=x2,F(xiàn)為拋物線的焦點,橢圓C2
x2
2
+
y2
a2
=1
(0<a<2);
(1)若M是C1與C2在第一象限的交點,且|MF|=
3
4
,求實數(shù)a的值;
(2)設直線l:y=kx+1與拋物線C1交于A,B兩個不同的點,l與橢圓C2交于P,Q兩個不同點,AB中點為R,PQ中點為S,若O在以RS為直徑的圓上,且k 2
1
2
,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案