分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)在閉區(qū)間的最小值即可;
(Ⅱ)集合題意得到g(x)在區(qū)間(0,1)內(nèi)至少有2個(gè)零點(diǎn),求出g(ln(-2a))=2aln(-2a)-3a+1-e,令2a=t,則-e<t<-1,令h(t)=tln(-t)-$\frac{3}{2}$t+1-e,根據(jù)函數(shù)的單調(diào)性證明即可.
解答 解:(Ⅰ)由f(x)=ex+ax2-bx-1,
得g(x)=f′(x)=ex+2ax-b,g′(x)=ex+2a,
x∈[0,1]時(shí),g′(x)∈[1+2a,e+2a],
當(dāng)a≥-$\frac{1}{2}$時(shí),g′(x)≥0,∴g(x)在[0,1]遞增,
∴g(x)在[0,1]上的最小值是g(0)=1-b,
a≤-$\frac{e}{2}$時(shí),g′(x)≤0,∴g(x)在[0,1]遞減,
∴g(x)在[0,1]上的最小值是g(1)=e+2a-b,
-$\frac{e}{2}$<a<-$\frac{1}{2}$時(shí),令g′(x)=0,解得:x=ln(-2a)∈(0,1),
∴g(x)在區(qū)間[0,ln(-2a)]上遞減,在區(qū)間(ln(-2a),1]上遞增,
故g(x)在[0,1]上的最小值是g(ln(-2a))=2aln(-2a)-2a-b,
綜上,a≥-$\frac{1}{2}$時(shí),g(x)在[0,1]上的最小值是g(0)=1-b,
a≤-$\frac{e}{2}$時(shí),g(x)在[0,1]上的最小值是g(1)=e+2a-b,
-$\frac{e}{2}$<a<-$\frac{1}{2}$時(shí),g(x)在[0,1]上的最小值是g(ln(-2a))=2aln(-2a)-2a-b,
(Ⅱ)證明:設(shè)x0是函數(shù)f(x)在區(qū)間(0,1)內(nèi)的一個(gè)零點(diǎn),
則由f(0)=f(1)=f(x0)=0可知,
f(x)在區(qū)間(0,x0)上不遞增,也不遞減,
則g(x)不恒為正,也不恒為負(fù),
故g(x)在區(qū)間(0,x0)內(nèi)存在零點(diǎn)x1,在區(qū)間(x0,1)內(nèi)存在零點(diǎn)x2,
故g(x)在區(qū)間(0,1)內(nèi)至少有2個(gè)零點(diǎn),
由(Ⅰ)得,a≥-$\frac{1}{2}$時(shí),g(x)在[0,1]遞增,
故g(x)在(0,1)內(nèi)至多1個(gè)零點(diǎn),不合題意,
a≤-$\frac{e}{2}$時(shí),g(x)在[0,1]遞減,
故g(x)在(0,1)內(nèi)至多1個(gè)零點(diǎn),不合題意,
-$\frac{e}{2}$<a<-$\frac{1}{2}$時(shí),g(x)在(0,ln(-2a))遞減,在(ln(-2a),1)遞增,
故x1∈(0,ln(-2a0),x2∈(ln(-2a),1),
故必有g(shù)(0)=1-b>0,g(1)=e+2a-b>0,g(ln(-2a))<0,
由f(1)=0,即e+a-b-1=0,解得:b=e+a-1,
故g(ln(-2a))=2aln(-2a)-3a+1-e,
令2a=t,則-e<t<-1,
令h(t)=tln(-t)-$\frac{3}{2}$t+1-e,則h′(t)=ln(-t)-$\frac{5}{2}$<0,
故h(t)在(-e,-1)遞減,h(t)<h(-e)=1-$\frac{e}{2}$<0,
∴-$\frac{e}{2}$<a<-$\frac{1}{2}$時(shí),g(ln(-2a))<0恒成立,
由g(0)=2-e-a>0,g(1)=a+1>0,解得:-1<a<2-e,
故函數(shù)f(x)在區(qū)間[(0,1)內(nèi)有零點(diǎn)時(shí),-1<a<2-e.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 8 | C. | $4\sqrt{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | $-\frac{1}{7}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [2,3) | B. | (-∞,2]∪(3,+∞) | C. | [0,2) | D. | (-∞,2)∪[3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)的最小正周期為π | |
B. | 函數(shù)f(x)的圖象關(guān)于直線$x=\frac{π}{12}$對(duì)稱 | |
C. | 函數(shù)f(x)的圖象可由g(x)=2sin2x的圖象向右平移$\frac{π}{6}$個(gè)單位得到 | |
D. | 函數(shù)f(x)在區(qū)間$[{-\frac{π}{4},0}]$上是增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x+5)2+y2=2 | B. | x2+(y+5)2=4 | C. | (x-5)2+y2=2 | D. | x2+(y-5)2=4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,3) | B. | (1,-3) | C. | (-1,3) | D. | (-1,-3) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com